1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
#############################################################################
## Copyright (c) 2010-2022 Rune Haubo Bojesen Christensen
##
## This file is part of the ordinal package for R (*ordinal*)
##
## *ordinal* is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 2 of the License, or
## (at your option) any later version.
##
## *ordinal* is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## A copy of the GNU General Public License is available at
## <https://www.r-project.org/Licenses/> and/or
## <http://www.gnu.org/licenses/>.
#############################################################################
# contrast-utils.R - utility functions for contrasts, terms and anova
# -------- Contents: --------
#
# containment
# term_contain
# relatives
# doolittle
# ensure_full_rank
# get_rdX
# extract_contrasts_type3
##############################################
######## containment()
##############################################
containment <- function(object) { # lm or merMod
# For all terms 'T' in object compute the terms
# Return a list:
# for each term 'T' a vector of terms that contain 'T'.
terms <- terms(object)
data_classes <- attr(terms(object), "dataClasses")
# Note: need fixed.only for merMod objects to get dataClasses
term_names <- attr(terms, "term.labels")
factor_mat <- attr(terms, "factors")
lapply(setNames(term_names, term_names), function(term) {
term_names[term_contain(term, factor_mat, data_classes, term_names)]
})
}
##############################################
######## term_contain()
##############################################
#' Determine which Terms Contain a Term
#'
#' The definition of \emph{containment} follows from the SAS documentation on
#' "The Four Types of Estimable Functions".
#'
#' Containment is defined for two model terms, say, F1 and F2 as:
#' F1 is contained in F2 (F2 contains F1) if
#' \enumerate{
#' \item F1 and F2 involve the same continuous variables (if any)
#' \item F2 involve more factors than F1
#' \item All factors in F1 (if any) are part of F2
#' }
#' The intercept, though not really a model term, is defined by SAS to be
#' contained in all factor terms, but it is not contained in any
#' effect involving a continuous variable.
#'
#' @param term character; name of a model term and one of \code{term_names}.
#' @param factors the result of \code{attr(terms_object, "factors")}.
#' @param dataClasses the result of
#' \code{attr(terms(model, fixed.only=FALSE), "dataClasses")}. Note that
#' \code{fixed.only=FALSE} is only needed for \code{merMod} objects, but does
#' no harm for \code{lm} objects.
#' @param term_names the result of \code{attr(terms_object, "term.labels")}.
#'
#' @return a logical vector indicating for each term in \code{term_names} if
#' it contains \code{term}.
#' @importFrom stats setNames
#' @keywords internal
term_contain <- function(term, factors, dataClasses, term_names) {
get_vars <- function(term)
# Extract vector of names of all variables in a term
rownames(factors)[factors[, term] == 1]
contain <- function(F1, F2) {
# Returns TRUE if F1 is contained in F2 (i.e. if F2 contains F1)
# F1, F2: Names of terms, i.e. attr(terms_object, "term.labels")
all(vars[[F1]] %in% vars[[F2]]) && # all variables in F1 are also in F2
length(setdiff(vars[[F2]], vars[[F1]])) > 0L && # F2 involve more variables than F1
setequal(numerics[[F1]], numerics[[F2]]) # F1 and F2 involve the same covariates (if any)
}
# Get (named) list of all variables in terms:
vars <- lapply(setNames(term_names, term_names), get_vars)
# Get (named) list of all _numeric_ variables in all terms:
numerics <- lapply(vars, function(varnms)
varnms[which(dataClasses[varnms] == "numeric")])
# Check if 'term' is contained in each model term:
sapply(term_names, function(term_nm) contain(term, term_nm))
}
##############################################
######## doolittle()
##############################################
#' Doolittle Decomposition
#'
#' @param x a numeric square matrix with at least 2 columns/rows.
#' @param eps numerical tolerance on the whether to normalize with components
#' in \code{L} with the diagonal elements of \code{U}.
#'
#' @return a list with two matrices of the same dimension as \code{x}:
#' \item{L}{lower-left unit-triangular matrix}
#' \item{U}{upper-right triangular matrix (\emph{not} unit-triangular)}
#'
#' @keywords internal
doolittle <- function(x, eps = 1e-6) {
if(!is.matrix(x) || ncol(x) != nrow(x) || !is.numeric(x))
stop("argument 'x' should be a numeric square matrix")
stopifnot(ncol(x) > 1L)
n <- nrow(x)
L <- U <- matrix(0, nrow=n, ncol=n)
diag(L) <- rep(1, n)
for(i in 1:n) {
ip1 <- i + 1
im1 <- i - 1
for(j in 1:n) {
U[i,j] <- x[i,j]
if (im1 > 0) {
for(k in 1:im1) {
U[i,j] <- U[i,j] - L[i,k] * U[k,j]
}
}
}
if ( ip1 <= n ) {
for ( j in ip1:n ) {
L[j,i] <- x[j,i]
if ( im1 > 0 ) {
for ( k in 1:im1 ) {
L[j,i] <- L[j,i] - L[j,k] * U[k,i]
}
}
L[j, i] <- if(abs(U[i, i]) < eps) 0 else L[j,i] / U[i,i]
}
}
}
L[abs(L) < eps] <- 0
U[abs(U) < eps] <- 0
list( L=L, U=U )
}
##############################################
######## ensure_full_rank()
##############################################
#' Ensure a Design Matrix has Full (Column) Rank
#'
#' Determine and drop redundant columns using the \code{\link{qr}}
#' decomposition.
#'
#' @param X a design matrix as produced by \code{model.matrix}.
#' @param tol \code{qr} tolerance.
#' @param silent throw message if columns are dropped from \code{X}? Default
#' is \code{FALSE}.
#' @param test.ans Test if the resulting/returned matrix has full rank? Default
#' is \code{FALSE}.
#'
#' @return A design matrix in which redundant columns are dropped
#' @keywords internal
ensure_full_rank <- function(X, tol = 1e-7, silent = FALSE, test.ans = FALSE) {
### works if ncol(X) >= 0 and nrow(X) >= 0
## test and match arguments:
stopifnot(is.matrix(X))
silent <- as.logical(silent)[1]
## perform the qr-decomposition of X using LINPACK methods:
qr.X <- qr(X, tol = tol, LAPACK = FALSE)
if(qr.X$rank == ncol(X)) {
## return X if X has full column rank
return(X)
}
if(!silent) ## message the no. dropped columns:
message(gettextf("Design is column rank deficient so dropping %d coef",
ncol(X) - qr.X$rank))
## return the columns correponding to the first qr.x$rank pivot
## elements of X:
keep <- with(qr.X, pivot[seq_len(rank)])
newX <- X[, keep, drop = FALSE]
sel <- with(qr.X, pivot[-seq_len(rank)])
## Copy old attributes:
if(!is.null(contr <- attr(X, "contrasts"))) attr(newX, "contrasts") <- contr
if(!is.null(asgn <- attr(X, "assign"))) attr(newX, "assign") <- asgn[-sel]
## did we succeed? stop-if-not:
if(test.ans && qr.X$rank != qr(newX)$rank)
stop(gettextf("Determination of full column rank design matrix failed"),
call. = FALSE)
return(newX)
}
##############################################
######## get_rdX()
##############################################
#' Compute the 'Full' Rank-Deficient Design Matrix
#'
#'
#' @param model a model object; lmerMod or lmerModLmerTest.
#' @param do.warn throw a message if there is no data for some factor
#' combinations.
#'
#' @return the rank-deficien design matrix
#' @author Rune Haubo B. Christensen
#' @keywords internal
#'
#' @importFrom stats as.formula model.frame terms model.matrix
get_rdX <- function(model, do.warn=TRUE) {
# Compute rank-deficient design-matrix X usign contr.treatment coding.
#
# model: terms(model), model.frame(model), fixef(model)
Terms <- terms(model, fixed.only=TRUE)
term_names <- attr(Terms, "term.labels")
df <- model.frame(model)
# Compute rank-deficient (full) design-matrix, X:
rdXi <- if(length(term_names)) lapply(term_names, function(trm) {
form <- as.formula(paste0("~ 0 + ", trm))
model.matrix(form, data=df) # no contrast arg
}) else list(model.matrix(~ 1, data=df)[, -1, drop=FALSE])
rdX <- do.call(cbind, rdXi)
param_names <- unlist(lapply(rdXi, colnames))
# Potentially add intercept:
has_intercept <- attr(Terms, "intercept") != 0
if(has_intercept) {
rdX <- cbind('(Intercept)'=rep(1, nrow(rdX)), rdX)
param_names <- c("(Intercept)", param_names)
}
colnames(rdX) <- param_names
# Warn/message if there are cells without data:
is_zero <- which(colSums(rdX) == 0)
if(do.warn && length(is_zero)) {
txt <- sprintf("Missing cells for: %s. ",
paste(param_names[is_zero], collapse = ", "))
# warning(paste(txt, "\nInterpret type III hypotheses with care."), call.=FALSE)
message(paste(txt, "\nInterpret type III hypotheses with care."))
}
rdX
}
##############################################
######## extract_contrasts_type3
##############################################
#' @importFrom MASS ginv
#' @importFrom stats terms resid lm.fit
extract_contrasts_type3 <- function(model, X=NULL) {
# Computes contrasts for type III tests with reference to treatment contrast coding
# X: Optional full rank design matrix in contr.treatment coding
Terms <- terms(model)
term_names <- attr(Terms, "term.labels")
if(is.null(X)) {
X <- get_model_matrix(model, type="remake", contrasts="contr.treatment")
X <- ensure_full_rank(X)
}
# Get 'complete' design matrix:
rdX <- get_rdX(model, do.warn = TRUE) # treatment contrasts
# cols for aliased coefs should be removed in X; not in rdX.
# This makes ginv(X) unique!
L <- zapsmall(t(MASS::ginv(X) %*% rdX)) # basic contrast matrix
dimnames(L) <- list(colnames(rdX), colnames(X))
# Orthogonalize contrasts for terms which are contained in other terms:
map <- term2colX(Terms, X)
is_contained <- containment(model)
# Orthogonalize higher order terms before lower order terms:
terms_order <- attr(Terms, "order")
orthog_order <- term_names[order(terms_order, decreasing = TRUE)]
# Only orthogonalize terms with columns in X:
keep <- names(which(sapply(map[orthog_order], length) > 0))
for(term in orthog_order[keep]) {
# if term is contained in other terms:
if(length(contains <- is_contained[[term]]) > 0) {
# orthogonalize cols in L for 'term' wrt. cols that contain 'term':
L[, map[[term]]] <-
zapsmall(resid(lm.fit(x=L[, unlist(map[contains]), drop=FALSE],
y=L[, map[[term]], drop=FALSE])))
}
}
# Keep rows in L corresponding to model coefficients:
L <- L[colnames(X), , drop=FALSE]
# Extract list of contrast matrices from L - one for each term:
Llist <- lapply(map[term_names], function(term) t(L[, term, drop=FALSE]))
# Keep all non-zero rows:
lapply(Llist, function(L) L[rowSums(abs(L)) > 1e-8, , drop=FALSE])
}
|