1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
|
#############################################################################
## Copyright (c) 2010-2022 Rune Haubo Bojesen Christensen
##
## This file is part of the ordinal package for R (*ordinal*)
##
## *ordinal* is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 2 of the License, or
## (at your option) any later version.
##
## *ordinal* is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## A copy of the GNU General Public License is available at
## <https://www.r-project.org/Licenses/> and/or
## <http://www.gnu.org/licenses/>.
#############################################################################
## This file contains:
## Various utility functions.
setLinks <- function(rho, link) {
### The Aranda-Ordaz and log-gamma links are not supported in this
### version of clm.
rho$pfun <- switch(link,
logit = plogis,
probit = pnorm,
cloglog = function(x, lower.tail=TRUE) pgumbel(x,
lower.tail=lower.tail, max=FALSE),
cauchit = pcauchy,
loglog = pgumbel,
"Aranda-Ordaz" = function(x, lambda) pAO(x, lambda),
"log-gamma" = function(x, lambda) plgamma(x, lambda))
rho$dfun <- switch(link,
logit = dlogis,
probit = dnorm,
cloglog = function(x) dgumbel(x, max=FALSE),
cauchit = dcauchy,
loglog = dgumbel,
"Aranda-Ordaz" = function(x, lambda) dAO(x, lambda),
"log-gamma" = function(x, lambda) dlgamma(x, lambda))
rho$gfun <- switch(link,
logit = glogis,
probit = gnorm,
cloglog = function(x) ggumbel(x, max=FALSE),
loglog = ggumbel,
cauchit = gcauchy,
"Aranda-Ordaz" = function(x, lambda) gAO(x, lambda), ## shouldn't happen
"log-gamma" = function(x, lambda) glgamma(x, lambda)
)
rho$link <- link
rho$nlambda <- if(rho$link %in% c("Aranda-Ordaz", "log-gamma")) 1 else 0
if(rho$link == "Aranda-Ordaz") rho$lambda <- 1
if(rho$link == "log-gamma") rho$lambda <- 0.1
}
makeThresholds <- function(y.levels, threshold) { ## , tJac) {
### Generate the threshold structure summarized in the transpose of
### the Jacobian matrix, tJac. Also generating nalpha and alpha.names.
### args:
### y - response variable, a factor
### threshold - one of "flexible", "symmetric" or "equidistant"
## stopifnot(is.factor(y))
lev <- y.levels
ntheta <- length(lev) - 1
## if(!is.null(tJac)) {
## stopifnot(nrow(tJac) == ntheta)
## nalpha <- ncol(tJac)
## alpha.names <- colnames(tJac)
## if(is.null(alpha.names) || anyDuplicated(alpha.names))
## alpha.names <- as.character(1:nalpha)
## dimnames(tJac) <- NULL
## }
## else { ## threshold structure identified by threshold argument:
if(threshold == "flexible") {
tJac <- diag(ntheta)
nalpha <- ntheta
alpha.names <- paste(lev[-length(lev)], lev[-1], sep="|")
}
if(threshold == "symmetric") {
if(!ntheta >=2)
stop("symmetric thresholds are only meaningful for responses with 3 or more levels",
call.=FALSE)
if(ntheta %% 2) { ## ntheta is odd
nalpha <- (ntheta + 1)/2 ## No. threshold parameters
tJac <- t(cbind(diag(-1, nalpha)[nalpha:1, 1:(nalpha-1)],
diag(nalpha)))
tJac[,1] <- 1
alpha.names <-
c("central", paste("spacing.", 1:(nalpha-1), sep=""))
}
else { ## ntheta is even
nalpha <- (ntheta + 2)/2
tJac <- cbind(rep(1:0, each = ntheta / 2),
rbind(diag(-1, ntheta / 2)[(ntheta / 2):1,],
diag(ntheta / 2)))
tJac[,2] <- rep(0:1, each = ntheta / 2)
alpha.names <- c("central.1", "central.2")
if(nalpha > 2) alpha.names <-
c(alpha.names, paste("spacing.", 1:(nalpha-2), sep=""))
}
}
## Assumes latent mean is zero:
if(threshold == "symmetric2") {
if(!ntheta >=2)
stop("symmetric thresholds are only meaningful for responses with 3 or more levels",
call.=FALSE)
if(ntheta %% 2) { ## ntheta is odd
nalpha <- (ntheta - 1)/2 ## No. threshold parameters
tJac <- rbind(apply(-diag(nalpha), 1, rev),
rep(0, nalpha),
diag(nalpha))
}
else { ## ntheta is even
nalpha <- ntheta/2
tJac <- rbind(apply(-diag(nalpha), 1, rev),
diag(nalpha))
}
alpha.names <- paste("spacing.", 1:nalpha, sep="")
}
if(threshold == "equidistant") {
if(!ntheta >=2)
stop("equidistant thresholds are only meaningful for responses with 3 or more levels",
call.=FALSE)
tJac <- cbind(1, 0:(ntheta-1))
nalpha <- 2
alpha.names <- c("threshold.1", "spacing")
}
## }
return(list(tJac = tJac, nalpha = nalpha, alpha.names = alpha.names))
}
getFitted <- function(eta1, eta2, pfun, ...) {
## eta1, eta2: linear predictors
## pfun: cumulative distribution function
##
## Compute fitted values while maintaining high precision in the
## result - if eta1 and eta2 are both large, fitted is the
## difference between two numbers very close to 1, which leads to
## imprecision and potentially errors.
##
## Note that (eta1 > eta2) always holds, hence (eta2 > 0) happens
## relatively rarely.
k2 <- eta2 > 0
fitted <- pfun(eta1) - pfun(eta2)
fitted[k2] <- pfun(eta2[k2], lower.tail=FALSE) -
pfun(eta1[k2], lower.tail=FALSE)
fitted
}
getFittedC <-
function(eta1, eta2,
link = c("logit", "probit", "cloglog", "loglog", "cauchit",
"Aranda-Ordaz", "log-gamma"), lambda=1)
### Same as getFitted only this is implemented in C and handles all
### link functions including the flexible ones.
{
link <- match.arg(link)
.Call("get_fitted", eta1, eta2, link, lambda)
}
getWeights <- function(mf) {
### mf - model.frame
n <- nrow(mf)
if(is.null(wts <- model.weights(mf))) wts <- rep(1, n)
## if (any(wts <= 0))
## stop(gettextf("non-positive weights are not allowed"),
## call.=FALSE)
### NOTE: We do not remove observations where weights == 0, because
### that could be a somewhat surprising behaviour. It would also
### require that the model.frame be evaluated all over again to get
### the right response vector with the right number of levels.
if(length(wts) && length(wts) != n)
stop(gettextf("number of weights is %d should equal %d (number of observations)",
length(wts), n), call.=FALSE)
if(any(wts < 0))
stop(gettextf("negative weights are not allowed"),
call.=FALSE)
## if(any(wts == 0)) {
## y <- model.response(mf, "any")
## if(any(table(y[wts > 0]) == 0))
## stop(gettextf("zero positive weights for one or more response categories"),
## call.=FALSE)
## }
return(as.double(wts))
}
getOffset <- function(mf, terms) {
### mf - model.frame
n <- nrow(mf)
off <- rep(0, n)
if(!is.null(o <- attr(terms, "offset"))) {
if(length(o) > 1)
stop("only one offset term allowed in each formula", call.=FALSE)
varnm <- attr(terms, "variables")
## deparse all variable names - character vector:
varnm <- unlist(lapply(as.list(varnm), deparse)[-1])
off <- mf[, varnm[o]]
}
## off <- as.vector(mf[, o])
if(length(off) && length(off) != n)
stop(gettextf("number of offsets is %d should equal %d (number of observations)",
length(off), n), call.=FALSE)
return(as.double(off))
}
getOffsetStd <- function(mf) {
n <- nrow(mf)
if(is.null(off <- model.offset(mf))) off <- rep(0, n)
if(length(off) && length(off) != n)
stop(gettextf("number of offsets is %d should equal %d (number of observations)",
length(off), n), call.=FALSE)
return(as.double(off))
}
getFullForm <- function(form, ..., envir=parent.frame()) {
### collect terms in several formulas in a single formula
### sets the environment of the resulting formula to envir.
forms <- list(...)
if(lf <- length(forms)) {
rhs <- character(0)
## Collect rhs terms in a single vector of rh-sides:
for(i in 1:lf) {
rhs <- c(rhs, Deparse(forms[[i]][[2]]))
if(length(forms[[i]]) >= 3)
rhs <- c(rhs, Deparse(forms[[i]][[3]]))
}
## add '+' inbetween terms:
rhs <- paste(rhs, collapse=" + ")
## combine if 'deparse(form)' is a (long) vector:
form2 <- paste(deparse(form, width.cutoff=500L), collapse=" ")
## combine form2 and rhs into a single string:
form <- paste(form2, rhs, sep=" + ")
}
return(as.formula(form, env=envir))
}
## getFullForm <- function(form, ..., envir=parent.frame()) {
## ### collect terms in several formulas in a single formula (on the rhs)
## ### sets the environment of the resulting formula to envir.
## forms <- list(form, ...)
## allVars <- unlist(sapply(forms, all.vars))
## rhs <- paste(allVars, collapse=" + ")
## form <- paste("~", rhs)
## return(as.formula(form, env=envir))
## }
## getCtrlArgs <- function(control, extras) {
## ### Recover control arguments from clmm.control and extras (...):
## ###
## ## Collect control arguments in list:
## ctrl.args <- c(extras, control$method, control$useMatrix,
## control$ctrl, control$optCtrl)
## ## Identify the two occurences "trace", delete them, and add trace=1
## ## or trace=-1 to the list of arguments:
## which.trace <- which(names(ctrl.args) == "trace")
## trace.sum <- sum(unlist(ctrl.args[which.trace]))
## ctrl.args <- ctrl.args[-which.trace]
## ## remove duplicated arguments:
## ctrl.args <- ctrl.args[!duplicated(names(ctrl.args))]
## if(trace.sum >= 1) ctrl.args$trace <- 1
## if(trace.sum >= 2 || trace.sum <= -1) ctrl.args$trace <- -1
## ## return the updated list of control parameters:
## do.call("clmm.control", ctrl.args)
## }
getCtrlArgs <- function(control, extras) {
### Recover control arguments from clmm.control and extras (...):
###
if(!is.list(control))
stop("'control' should be a list")
## Collect control arguments in list:
## 1) assuming 'control' is a call to clmm.control:
ctrl.args <-
if(setequal(names(control), names(clmm.control())))
c(extras, control["method"], control["useMatrix"],
control$ctrl, control$optCtrl)
## assuming 'control' is specified with control=list( 'args'):
else
c(extras, control)
### NOTE: having c(extras, control) rather than c(control, extras)
### means that extras have precedence over control.
## Identify the two occurences "trace", delete them, and add trace=1
## or trace=-1 to the list of arguments:
which.trace <- which(names(ctrl.args) == "trace")
trace.sum <- sum(unlist(ctrl.args[which.trace]))
if(trace.sum)
ctrl.args <- ctrl.args[-which.trace]
## remove duplicated arguments:
ctrl.args <- ctrl.args[!duplicated(names(ctrl.args))]
if(trace.sum >= 1) ctrl.args$trace <- 1
if(trace.sum >= 2 || trace.sum <= -1) ctrl.args$trace <- -1
## return the updated list of control parameters:
do.call("clmm.control", ctrl.args)
}
Trace <- function(iter, stepFactor, val, maxGrad, par, first=FALSE) {
t1 <- sprintf(" %3d: %-5e: %.3f: %1.3e: ",
iter, stepFactor, val, maxGrad)
t2 <- formatC(par)
if(first)
cat("iter: step factor: Value: max|grad|: Parameters:\n")
cat(t1, t2, "\n")
}
response.name <- function(terms) {
vars <- as.character(attr(terms, "variables"))
vars[1 + attr(terms, "response")]
}
getB <- function(y, NOM=NULL, X=NULL, offset=NULL, tJac=NULL) {
### NOTE: Is this function ever used?
### NOTE: no tests that arguments conform.
nlev <- nlevels(y)
n <- length(y)
B2 <- 1 * (col(matrix(0, n, nlev)) == c(unclass(y)))
o1 <- c(1e5 * B2[, nlev]) - offset
o2 <- c(-1e5 * B2[,1]) - offset
B1 <- B2[, -(nlev), drop = FALSE]
B2 <- B2[, -1, drop = FALSE]
## adjust B1 and B2 for structured thresholds:
if(!is.null(tJac)) {
B1 <- B1 %*% tJac
B2 <- B2 %*% tJac
}
## update B1 and B2 with nominal effects:
if(!is.null(NOM) && ncol(NOM) > 1) {
## if !is.null(NOM) and NOM is more than an intercept:
LL1 <- lapply(1:ncol(NOM), function(x) B1 * NOM[,x])
B1 <- do.call(cbind, LL1)
LL2 <- lapply(1:ncol(NOM), function(x) B2 * NOM[,x])
B2 <- do.call(cbind, LL2)
}
## update B1 and B2 with location effects (X):
nbeta <- ncol(X) - 1
if(ncol(X) > 1) {
B1 <- cbind(B1, -X[, -1, drop = FALSE])
B2 <- cbind(B2, -X[, -1, drop = FALSE])
}
dimnames(B1) <- NULL
dimnames(B2) <- NULL
namedList(B1, B2, o1, o2)
}
Deparse <-
function(expr, width.cutoff = 500L, backtick = mode(expr) %in%
c("call", "expression", "(", "function"),
control = c("keepInteger", "showAttributes", "keepNA"),
nlines = -1L)
paste(deparse(expr=expr, width.cutoff= width.cutoff,
backtick=backtick,
control=control, nlines=nlines), collapse = " ")
getContrasts <- function(terms, contrasts) {
if(is.null(contrasts)) return(NULL)
term.labels <- attr(terms, "term.labels")
contrasts[names(contrasts) %in% term.labels]
}
checkContrasts <- function(terms, contrasts) {
### Check that contrasts are not specified for absent factors and warn
### about them
term.labels <- attr(terms, "term.labels")
nm.contr <- names(contrasts)
notkeep <- nm.contr[!nm.contr %in% term.labels]
msg <-
if(length(notkeep) > 2)
"variables '%s' are absent: their contrasts will be ignored"
else "variable '%s' is absent: its contrasts will be ignored"
if(length(notkeep))
warning(gettextf(msg, paste(notkeep, collapse=", ")),
call.=FALSE)
invisible()
}
get_clmInfoTab <- function(object, ...) {
names <- c("link", "threshold", "nobs", "logLik", "edf", "niter",
"maxGradient", "cond.H")
stopifnot(all(names %in% names(object)))
info <- with(object, {
data.frame("link" = link,
"threshold" = threshold,
"nobs" = nobs,
"logLik" = formatC(logLik, digits=2, format="f"),
"AIC" = formatC(-2*logLik + 2*edf, digits=2,
format="f"),
"niter" = paste(niter[1], "(", niter[2], ")", sep=""),
### NOTE: iterations to get starting values for scale models *are*
### included here.
"max.grad" = formatC(maxGradient, digits=2,
format="e"),
"cond.H" = formatC(cond.H, digits=1, format="e")
## BIC is not part of output since it is not clear what
## the no. observations are.
)
})
info
}
format_tJac <- function(tJac, y.levels, alpha.names) {
lev <- y.levels
rownames(tJac) <- paste(lev[-length(lev)], lev[-1], sep="|")
colnames(tJac) <- alpha.names
tJac
}
extractFromFrames <- function(frames, fullmf) {
lst <- list(y.levels=frames$y.levels,
na.action=attr(fullmf, "na.action"),
tJac=format_tJac(frames))
lstX <- list(contrasts=attr(frames$X, "contrasts"), terms=frames$terms,
xlevels=.getXlevels(frames$terms, fullmf))
lst <- c(lst, lstX)
if(!is.null(frames[["S"]]))
lst <- c(lst, list(S.contrasts=attr(frames$S, "contrasts"),
S.terms=frames$S.terms,
S.xlevels=.getXlevels(frames$S.terms, fullmf)))
if(!is.null(frames[["NOM"]]))
lst <- c(lst, list(nom.contrasts=attr(frames$NOM, "contrasts"),
nom.terms=frames$nom.terms,
nom.xlevels=.getXlevels(frames$nom.terms, fullmf)))
lst
}
formatTheta <- function(alpha, tJac, x, sign.nominal) {
## x: alpha, tJac, nom.terms, NOM, nom.contrasts, nom.xlevels,
Theta.ok <- TRUE
if(is.null(x[["NOM"]])) { ## no nominal effects
Theta <- alpha %*% t(tJac)
colnames(Theta) <- rownames(tJac)
return(namedList(Theta, Theta.ok))
}
x$nom.assign <- attr(x$NOM, "assign")
args <- c("nom.terms", "nom.assign")
args <- c("nom.terms")
if(any(sapply(args, function(txt) is.null(x[[txt]])))) {
## Nominal effects, but we cannot compute Theta
warning("Cannot assess if all thresholds are increasing",
call.=FALSE)
return(namedList(Theta.ok))
}
## Get matrix of thresholds; Theta:
Theta.list <-
getThetamat(terms=x$nom.terms,
alpha=alpha,
assign=attr(x$NOM, "assign"),
contrasts=x$nom.contrasts,
tJac=tJac,
xlevels=x$nom.xlevels,
sign.nominal=sign.nominal)
## Test that (finite) thresholds are increasing:
if(all(is.finite(unlist(Theta.list$Theta)))) {
th.increasing <- apply(Theta.list$Theta, 1, function(th)
all(diff(th) >= 0))
if(!all(th.increasing))
Theta.ok <- FALSE
}
Theta <- if(length(Theta.list) == 2)
with(Theta.list, cbind(mf.basic, Theta)) else Theta.list$Theta
alpha.mat <- matrix(alpha, ncol=ncol(tJac), byrow=TRUE)
colnames(alpha.mat) <- colnames(tJac)
rownames(alpha.mat) <- attr(x$NOM, "orig.colnames")
## Return
namedList(Theta, alpha.mat, Theta.ok)
}
## We don't need this function anymore since the terms objects now
## always contain dataClasses and predvars attributes.
## get_dataClasses <- function(mf) {
## if(!is.null(Terms <- attr(mf, "terms")) &&
## !is.null(dataCl <- attr(Terms, "dataClasses")))
## return(dataCl)
## sapply(mf, .MFclass)
## }
## Returns a named list, where the names are the deparsed actual
## arguments:
namedList <- function(...) {
setNames(list(...), nm=sapply(as.list(match.call()), deparse)[-1])
}
## a <- 1
## b <- 2
## c <- 3
## d <- list(e=2, f=factor(letters[rep(1:2, 2)]))
## g <- matrix(runif(9), 3)
##
## namedList(a, b, c)
## namedList(a, b, c, d, g)
##
## res <- namedList(d, g)
## names(res)
|