1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
|
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="author" content="Roman Tsegelskyi, Gergely Daróczi" />
<meta name="date" content="2018-11-06" />
<title>Capturing evaluation information with evals</title>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
a.sourceLine { display: inline-block; line-height: 1.25; }
a.sourceLine { pointer-events: none; color: inherit; text-decoration: inherit; }
a.sourceLine:empty { height: 1.2em; position: absolute; }
.sourceCode { overflow: visible; }
code.sourceCode { white-space: pre; position: relative; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
code.sourceCode { white-space: pre-wrap; }
a.sourceLine { text-indent: -1em; padding-left: 1em; }
}
pre.numberSource a.sourceLine
{ position: relative; }
pre.numberSource a.sourceLine:empty
{ position: absolute; }
pre.numberSource a.sourceLine::before
{ content: attr(data-line-number);
position: absolute; left: -5em; text-align: right; vertical-align: baseline;
border: none; pointer-events: all;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
a.sourceLine::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#header {
text-align: center;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap;
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }
code > span.kw { color: #555; font-weight: bold; }
code > span.dt { color: #902000; }
code > span.dv { color: #40a070; }
code > span.bn { color: #d14; }
code > span.fl { color: #d14; }
code > span.ch { color: #d14; }
code > span.st { color: #d14; }
code > span.co { color: #888888; font-style: italic; }
code > span.ot { color: #007020; }
code > span.al { color: #ff0000; font-weight: bold; }
code > span.fu { color: #900; font-weight: bold; } code > span.er { color: #a61717; background-color: #e3d2d2; }
</style>
</head>
<body>
<h1 class="title toc-ignore">Capturing evaluation information with evals</h1>
<h4 class="author"><em>Roman Tsegelskyi, Gergely Daróczi</em></h4>
<h4 class="date"><em>2018-11-06</em></h4>
<p><code>evals</code> is aimed at collecting as much information as possible while evaluating R code. It can evaluate a character vector of R expressions, and it returns a list of information captured while running them:</p>
<ul>
<li><code>src</code> holds the R expression,</li>
<li><code>result</code> contains the raw R object as-is,</li>
<li><code>output</code> represents how the R object is printed to the standard output,</li>
<li><code>type</code> is the class of the returned R object,</li>
<li><code>msg</code> is a list of messages captured while evaluating the R expression. Among other messages, warnings/errors will appear here.</li>
<li><code>stdout</code> contains what, if anything, was written to the standard output.</li>
</ul>
<p>Besides capturing evaluation information, <code>evals</code> is able to automatically identify whether an R expression is returning anything to a graphical device, and can save the resulting image in a variety of file formats.</p>
<p>Another interesting <code>evals</code> feature is caching the results of evaluated expressions. Read the <a href="#result-caching">caching</a> section for more details.</p>
<p><code>evals</code> has a large number of options, which allow users to customize the call exactly as needed. Here we will focus on the most useful features, but the full list of options, with explanations, can be viewed by calling <code>?evalsOptions</code>. Also <code>evals</code> support permanent options that will persist for all calls to <code>evals</code>, this can be achieved by calling <code>evalsOptions</code>.</p>
<p>Let’s start with a basic example by evaluating <code>1:10</code> and collecting all information about it:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb1-1" data-line-number="1"><span class="kw">evals</span>(<span class="st">'1:10'</span>)</a>
<a class="sourceLine" id="cb1-2" data-line-number="2"><span class="co">#> [[1]]</span></a>
<a class="sourceLine" id="cb1-3" data-line-number="3"><span class="co">#> $src</span></a>
<a class="sourceLine" id="cb1-4" data-line-number="4"><span class="co">#> [1] "1:10"</span></a>
<a class="sourceLine" id="cb1-5" data-line-number="5"><span class="co">#> </span></a>
<a class="sourceLine" id="cb1-6" data-line-number="6"><span class="co">#> $result</span></a>
<a class="sourceLine" id="cb1-7" data-line-number="7"><span class="co">#> [1] 1 2 3 4 5 6 7 8 9 10</span></a>
<a class="sourceLine" id="cb1-8" data-line-number="8"><span class="co">#> </span></a>
<a class="sourceLine" id="cb1-9" data-line-number="9"><span class="co">#> $output</span></a>
<a class="sourceLine" id="cb1-10" data-line-number="10"><span class="co">#> [1] " [1] 1 2 3 4 5 6 7 8 9 10"</span></a>
<a class="sourceLine" id="cb1-11" data-line-number="11"><span class="co">#> </span></a>
<a class="sourceLine" id="cb1-12" data-line-number="12"><span class="co">#> $type</span></a>
<a class="sourceLine" id="cb1-13" data-line-number="13"><span class="co">#> [1] "integer"</span></a>
<a class="sourceLine" id="cb1-14" data-line-number="14"><span class="co">#> </span></a>
<a class="sourceLine" id="cb1-15" data-line-number="15"><span class="co">#> $msg</span></a>
<a class="sourceLine" id="cb1-16" data-line-number="16"><span class="co">#> $msg$messages</span></a>
<a class="sourceLine" id="cb1-17" data-line-number="17"><span class="co">#> NULL</span></a>
<a class="sourceLine" id="cb1-18" data-line-number="18"><span class="co">#> </span></a>
<a class="sourceLine" id="cb1-19" data-line-number="19"><span class="co">#> $msg$warnings</span></a>
<a class="sourceLine" id="cb1-20" data-line-number="20"><span class="co">#> NULL</span></a>
<a class="sourceLine" id="cb1-21" data-line-number="21"><span class="co">#> </span></a>
<a class="sourceLine" id="cb1-22" data-line-number="22"><span class="co">#> $msg$errors</span></a>
<a class="sourceLine" id="cb1-23" data-line-number="23"><span class="co">#> NULL</span></a>
<a class="sourceLine" id="cb1-24" data-line-number="24"><span class="co">#> </span></a>
<a class="sourceLine" id="cb1-25" data-line-number="25"><span class="co">#> </span></a>
<a class="sourceLine" id="cb1-26" data-line-number="26"><span class="co">#> $stdout</span></a>
<a class="sourceLine" id="cb1-27" data-line-number="27"><span class="co">#> NULL</span></a>
<a class="sourceLine" id="cb1-28" data-line-number="28"><span class="co">#> </span></a>
<a class="sourceLine" id="cb1-29" data-line-number="29"><span class="co">#> attr(,"class")</span></a>
<a class="sourceLine" id="cb1-30" data-line-number="30"><span class="co">#> [1] "evals"</span></a></code></pre></div>
<p>Not all the information might be useful, so <code>evals</code> makes it is possible to capture only some of the information, by specifying the <code>output</code> parameter:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb2-1" data-line-number="1"><span class="kw">evals</span>(<span class="st">'1:10'</span>, <span class="dt">output =</span> <span class="kw">c</span>(<span class="st">'result'</span>, <span class="st">'output'</span>))</a>
<a class="sourceLine" id="cb2-2" data-line-number="2"><span class="co">#> [[1]]</span></a>
<a class="sourceLine" id="cb2-3" data-line-number="3"><span class="co">#> $result</span></a>
<a class="sourceLine" id="cb2-4" data-line-number="4"><span class="co">#> [1] 1 2 3 4 5 6 7 8 9 10</span></a>
<a class="sourceLine" id="cb2-5" data-line-number="5"><span class="co">#> </span></a>
<a class="sourceLine" id="cb2-6" data-line-number="6"><span class="co">#> $output</span></a>
<a class="sourceLine" id="cb2-7" data-line-number="7"><span class="co">#> [1] " [1] 1 2 3 4 5 6 7 8 9 10"</span></a>
<a class="sourceLine" id="cb2-8" data-line-number="8"><span class="co">#> </span></a>
<a class="sourceLine" id="cb2-9" data-line-number="9"><span class="co">#> attr(,"class")</span></a>
<a class="sourceLine" id="cb2-10" data-line-number="10"><span class="co">#> [1] "evals"</span></a></code></pre></div>
<p>One of the neat features of <code>evals</code> that it catches errors/warnings without interrupting the evaluation and saves them.</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb3-1" data-line-number="1"><span class="kw">evals</span>(<span class="st">'x'</span>)[[<span class="dv">1</span>]]<span class="op">$</span>msg</a>
<a class="sourceLine" id="cb3-2" data-line-number="2"><span class="co">#> $messages</span></a>
<a class="sourceLine" id="cb3-3" data-line-number="3"><span class="co">#> NULL</span></a>
<a class="sourceLine" id="cb3-4" data-line-number="4"><span class="co">#> </span></a>
<a class="sourceLine" id="cb3-5" data-line-number="5"><span class="co">#> $warnings</span></a>
<a class="sourceLine" id="cb3-6" data-line-number="6"><span class="co">#> NULL</span></a>
<a class="sourceLine" id="cb3-7" data-line-number="7"><span class="co">#> </span></a>
<a class="sourceLine" id="cb3-8" data-line-number="8"><span class="co">#> $errors</span></a>
<a class="sourceLine" id="cb3-9" data-line-number="9"><span class="co">#> [1] "object 'x' not found"</span></a>
<a class="sourceLine" id="cb3-10" data-line-number="10"><span class="kw">evals</span>(<span class="st">'as.numeric("1.1a")'</span>)[[<span class="dv">1</span>]]<span class="op">$</span>msg</a>
<a class="sourceLine" id="cb3-11" data-line-number="11"><span class="co">#> $messages</span></a>
<a class="sourceLine" id="cb3-12" data-line-number="12"><span class="co">#> NULL</span></a>
<a class="sourceLine" id="cb3-13" data-line-number="13"><span class="co">#> </span></a>
<a class="sourceLine" id="cb3-14" data-line-number="14"><span class="co">#> $warnings</span></a>
<a class="sourceLine" id="cb3-15" data-line-number="15"><span class="co">#> [1] "NAs introduced by coercion"</span></a>
<a class="sourceLine" id="cb3-16" data-line-number="16"><span class="co">#> </span></a>
<a class="sourceLine" id="cb3-17" data-line-number="17"><span class="co">#> $errors</span></a>
<a class="sourceLine" id="cb3-18" data-line-number="18"><span class="co">#> NULL</span></a></code></pre></div>
<div id="graphs-and-graphical-options" class="section level2">
<h2>Graphs and Graphical Options</h2>
<p>As mentioned before, <code>evals</code> captures the output to graphical devices and saves it:</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb4-1" data-line-number="1"><span class="kw">evals</span>(<span class="st">'plot(mtcars)'</span>)[[<span class="dv">1</span>]]<span class="op">$</span>result</a>
<a class="sourceLine" id="cb4-2" data-line-number="2"><span class="co">#> [1] "my_plots/test.jpeg"</span></a>
<a class="sourceLine" id="cb4-3" data-line-number="3"><span class="co">#> attr(,"class")</span></a>
<a class="sourceLine" id="cb4-4" data-line-number="4"><span class="co">#> [1] "image"</span></a></code></pre></div>
<p><img src="" /></p>
<p>You can specify the output directory using the <code>graph.dir</code> parameter, and the output type using the <code>graph.output</code> parameter. Currently, it could be any of <code>grDevices</code>: <code>png</code>, <code>bmp</code>,<code>jpeg</code>,<code>jpg</code>, <code>tiff</code>, <code>svg</code>, or <code>pdf</code>.</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb5-1" data-line-number="1"><span class="kw">evals</span>(<span class="st">'plot(mtcars)'</span>, <span class="dt">graph.dir =</span> <span class="st">'my_plots'</span>, <span class="dt">graph.output =</span> <span class="st">'jpg'</span>)[[<span class="dv">1</span>]]<span class="op">$</span>result</a>
<a class="sourceLine" id="cb5-2" data-line-number="2"><span class="co">#> [1] "my_plots/test.jpeg"</span></a>
<a class="sourceLine" id="cb5-3" data-line-number="3"><span class="co">#> attr(,"class")</span></a>
<a class="sourceLine" id="cb5-4" data-line-number="4"><span class="co">#> [1] "image"</span></a></code></pre></div>
<p>Moreover, <code>evals</code> provides facilities to:</p>
<ul>
<li>save the environments in which plots were generated</li>
<li>save the plot via <code>recordPlot</code> to distinct files with <code>recodplot</code> extension</li>
<li>save the raw R object returned (usually with <code>lattice</code> or <code>ggplot2</code>) while generating the plot to distinct files with <code>RDS</code> extension</li>
</ul>
<div id="style-unification" class="section level3">
<h3>Style unification</h3>
<p><code>evals</code> provides very powerful facilities to unify the styling of images produced by different packages, like <code>ggplot2</code> and <code>lattice</code>.</p>
<p>Let’s prepare the data for plotting:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb6-1" data-line-number="1">## generating dataset</a>
<a class="sourceLine" id="cb6-2" data-line-number="2"><span class="kw">set.seed</span>(<span class="dv">1</span>)</a>
<a class="sourceLine" id="cb6-3" data-line-number="3">df <-<span class="st"> </span>mtcars[, <span class="kw">c</span>(<span class="st">'hp'</span>, <span class="st">'wt'</span>)]</a>
<a class="sourceLine" id="cb6-4" data-line-number="4">df<span class="op">$</span>factor <-<span class="st"> </span><span class="kw">sample</span>(<span class="kw">c</span>(<span class="st">'Foo'</span>, <span class="st">'Bar'</span>, <span class="st">'Foo bar'</span>), <span class="dt">size =</span> <span class="kw">nrow</span>(df), <span class="dt">replace =</span> <span class="ot">TRUE</span>)</a>
<a class="sourceLine" id="cb6-5" data-line-number="5">df<span class="op">$</span>factor2 <-<span class="st"> </span><span class="kw">sample</span>(<span class="kw">c</span>(<span class="st">'Foo'</span>, <span class="st">'Bar'</span>, <span class="st">'Foo bar'</span>), <span class="dt">size =</span> <span class="kw">nrow</span>(df), <span class="dt">replace =</span> <span class="ot">TRUE</span>)</a>
<a class="sourceLine" id="cb6-6" data-line-number="6">df<span class="op">$</span>time <-<span class="st"> </span><span class="dv">1</span><span class="op">:</span><span class="kw">nrow</span>(df)</a></code></pre></div>
<p>Now let’s plot the histograms:</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb7-1" data-line-number="1"><span class="kw">evalsOptions</span>(<span class="st">'graph.unify'</span>, <span class="ot">TRUE</span>)</a>
<a class="sourceLine" id="cb7-2" data-line-number="2"><span class="kw">evals</span>(<span class="st">'histogram(df$hp, main = "Histogram with lattice")'</span>)[[<span class="dv">1</span>]]<span class="op">$</span>result</a>
<a class="sourceLine" id="cb7-3" data-line-number="3"><span class="co">#> [1] "my_plots/test.jpeg"</span></a>
<a class="sourceLine" id="cb7-4" data-line-number="4"><span class="co">#> attr(,"class")</span></a>
<a class="sourceLine" id="cb7-5" data-line-number="5"><span class="co">#> [1] "image"</span></a>
<a class="sourceLine" id="cb7-6" data-line-number="6"><span class="kw">evals</span>(<span class="st">'ggplot(df) + geom_histogram(aes(x = hp), binwidth = 50) + ggtitle("Histogram with ggplot2")'</span>)[[<span class="dv">1</span>]]<span class="op">$</span>result</a>
<a class="sourceLine" id="cb7-7" data-line-number="7"><span class="co">#> [1] "my_plots/test.jpeg"</span></a>
<a class="sourceLine" id="cb7-8" data-line-number="8"><span class="co">#> attr(,"class")</span></a>
<a class="sourceLine" id="cb7-9" data-line-number="9"><span class="co">#> [1] "image"</span></a>
<a class="sourceLine" id="cb7-10" data-line-number="10"><span class="kw">evalsOptions</span>(<span class="st">'graph.unify'</span>, <span class="ot">FALSE</span>)</a></code></pre></div>
<p><img src="" /> <img src="" /></p>
<p>Options for unification can be set with <code>panderOptions</code>. For example:</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb8-1" data-line-number="1"><span class="kw">panderOptions</span>(<span class="st">'graph.fontfamily'</span>, <span class="st">"Comic Sans MS"</span>)</a>
<a class="sourceLine" id="cb8-2" data-line-number="2"><span class="kw">panderOptions</span>(<span class="st">'graph.fontsize'</span>, <span class="dv">18</span>)</a>
<a class="sourceLine" id="cb8-3" data-line-number="3"><span class="kw">panderOptions</span>(<span class="st">'graph.fontcolor'</span>, <span class="st">'blue'</span>)</a>
<a class="sourceLine" id="cb8-4" data-line-number="4"><span class="kw">panderOptions</span>(<span class="st">'graph.grid.color'</span>, <span class="st">'blue'</span>)</a>
<a class="sourceLine" id="cb8-5" data-line-number="5"><span class="kw">panderOptions</span>(<span class="st">'graph.axis.angle'</span>, <span class="dv">3</span>)</a>
<a class="sourceLine" id="cb8-6" data-line-number="6"><span class="kw">panderOptions</span>(<span class="st">'graph.boxes'</span>, T)</a>
<a class="sourceLine" id="cb8-7" data-line-number="7"><span class="kw">panderOptions</span>(<span class="st">'graph.legend.position'</span>, <span class="st">'top'</span>)</a>
<a class="sourceLine" id="cb8-8" data-line-number="8"><span class="kw">panderOptions</span>(<span class="st">'graph.colors'</span>, <span class="kw">rainbow</span>(<span class="dv">5</span>))</a>
<a class="sourceLine" id="cb8-9" data-line-number="9"><span class="kw">panderOptions</span>(<span class="st">'graph.grid'</span>, <span class="ot">FALSE</span>)</a>
<a class="sourceLine" id="cb8-10" data-line-number="10"><span class="kw">panderOptions</span>(<span class="st">'graph.symbol'</span>, <span class="dv">22</span>)</a></code></pre></div>
<p>More information and examples on style unification can be obtained by <code>Pandoc.brew</code>ing the tutorial available <a href="https://github.com/Rapporter/pander/blob/master/inst/examples/graphs.brew">here</a>.</p>
</div>
</div>
<div id="logging" class="section level2">
<h2>Logging</h2>
<p>To make execution and debugging easier to understand, <code>evals</code> provides logging with the <code>log</code> parameter. Logging in <code>evals</code> relies on the <a href="cran.r-project.org/web/packages/futile.logger/futile.logger.pdf"><code>futile.logger</code></a> package, which provides a logging API similar to <code>log4j</code>. Basic example:</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb9-1" data-line-number="1">x <-<span class="st"> </span><span class="kw">evals</span>(<span class="st">'1:10'</span>, <span class="dt">log =</span> <span class="st">'foo'</span>)</a>
<a class="sourceLine" id="cb9-2" data-line-number="2"><span class="co">#> INFO [2018-11-06 11:17:40] Command run: 1:10</span></a></code></pre></div>
<p><code>futile.logger</code>’s thresholds range from most verbose to least verbose: <code>TRACE</code>, <code>DEBUG</code>, <code>INFO</code>, <code>WARN</code>, <code>ERROR</code>, <code>FATAL</code>. The threshold defaults to <code>INFO</code>, which will hide some unessential information. To permanently set the threshold for logger use <code>flog.threshold</code>:</p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb10-1" data-line-number="1"><span class="kw">evalsOptions</span>(<span class="st">'log'</span>, <span class="st">'evals'</span>)</a>
<a class="sourceLine" id="cb10-2" data-line-number="2"><span class="kw">flog.threshold</span>(TRACE, <span class="st">'evals'</span>)</a>
<a class="sourceLine" id="cb10-3" data-line-number="3"><span class="co">#> NULL</span></a>
<a class="sourceLine" id="cb10-4" data-line-number="4">x <-<span class="st"> </span><span class="kw">evals</span>(<span class="st">'1:10'</span>, <span class="dt">cache.time =</span> <span class="dv">0</span>)</a>
<a class="sourceLine" id="cb10-5" data-line-number="5"><span class="co">#> INFO [2018-11-06 11:17:40] Command run: 1:10</span></a>
<a class="sourceLine" id="cb10-6" data-line-number="6"><span class="co">#> TRACE [2018-11-06 11:17:40] Cached result</span></a>
<a class="sourceLine" id="cb10-7" data-line-number="7"><span class="co">#> DEBUG [2018-11-06 11:17:40] Returned object: class = integer, length = 10, dim = , size = 96 bytes</span></a></code></pre></div>
<p><code>futile.logger</code> also provides a very useful ability to write logs to files instead of printing them to the prompt:</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb11-1" data-line-number="1">t <-<span class="st"> </span><span class="kw">tempfile</span>()</a>
<a class="sourceLine" id="cb11-2" data-line-number="2"><span class="kw">flog.appender</span>(<span class="kw">appender.file</span>(t), <span class="dt">name =</span> <span class="st">'evals'</span>)</a>
<a class="sourceLine" id="cb11-3" data-line-number="3"><span class="co">#> NULL</span></a>
<a class="sourceLine" id="cb11-4" data-line-number="4">x <-<span class="st"> </span><span class="kw">evals</span>(<span class="st">'1:10'</span>, <span class="dt">log =</span> <span class="st">'evals'</span>)</a>
<a class="sourceLine" id="cb11-5" data-line-number="5"><span class="kw">readLines</span>(t)</a>
<a class="sourceLine" id="cb11-6" data-line-number="6"><span class="co">#> [1] "INFO [2018-11-06 11:17:40] Command run: 1:10" </span></a>
<a class="sourceLine" id="cb11-7" data-line-number="7"><span class="co">#> [2] "TRACE [2018-11-06 11:17:40] Returning cached R object."</span></a>
<a class="sourceLine" id="cb11-8" data-line-number="8"><span class="co"># revert back to console</span></a>
<a class="sourceLine" id="cb11-9" data-line-number="9"><span class="kw">flog.appender</span>(<span class="kw">appender.console</span>(), <span class="dt">name =</span> <span class="st">'evals'</span>)</a>
<a class="sourceLine" id="cb11-10" data-line-number="10"><span class="co">#> NULL</span></a></code></pre></div>
</div>
<div id="result-caching" class="section level2">
<h2>Result Caching</h2>
<p><code>evals</code> is uses a custom caching algorithm to cache the results of evaluated R expressions.</p>
<div id="how-it-works" class="section level3">
<h3>How it works</h3>
<ul>
<li>All R code passed to <code>evals</code> is split into single expressions and parsed.</li>
<li>For each R expression (function call, assignment, etc.), <code>evals</code> extracts symbols in a separate list in <code>getCallParts</code>. This list describes the unique structure and the content of the passed R expressions</li>
<li>A hash is computed for each list element and cached in <code>pander</code>’s local environments. This is useful if you are using large data frames; otherwise, the caching algorithm would have to compute the hash for the same data frame each time it’s touched! This way the hash is recomputed only if the R object with the given name is changed.</li>
<li>The list of such R objects is serialized, then an SHA-1 hash is computed, taking into consideration <code>panderOptions</code> and <code>evalsOptions</code>, which all together is unique and there is no real risk of collision.</li>
<li>If <code>evals</code> can find the cached results in the appropriate environment (if <code>cache.mode set</code> to environment) or in a file named to the computed hash (if <code>cache.mode</code> set to <code>disk</code>), then it is returned on the spot. The objects modified/created by the cached code are also updated.</li>
<li>Otherwise the call is evaluated and the results and the modified R objects of the environment are optionally saved to cache (e.g. if <code>cache</code> is active and if the evaluation <code>proc.time()</code> > <code>cache.time</code> parameter). Cached results are saved in <code>cached.results</code> in <code>pander</code>’s namespace. <code>evals</code> also remembers if R expressions change the evaluation environment (for example assignments) and saves such changes in <code>cached.environemnts</code> in <code>pander</code>’s namespace.</li>
</ul>
</div>
<div id="examples" class="section level3">
<h3>Examples</h3>
<p>We will set <code>cache.time</code> to 0, to cache all expressions regardless of time they took to evaluate. We will also use the logging facilites described above to simplify the understanding of how caching works.</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb12-1" data-line-number="1"><span class="kw">evalsOptions</span>(<span class="st">'cache.time'</span>, <span class="dv">0</span>)</a>
<a class="sourceLine" id="cb12-2" data-line-number="2"><span class="kw">evalsOptions</span>(<span class="st">'log'</span>, <span class="st">'evals'</span>)</a>
<a class="sourceLine" id="cb12-3" data-line-number="3"><span class="kw">flog.threshold</span>(TRACE, <span class="st">'evals'</span>)</a>
<a class="sourceLine" id="cb12-4" data-line-number="4"><span class="co">#> NULL</span></a></code></pre></div>
<p>Let’s start with small example.</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb13-1" data-line-number="1"><span class="kw">system.time</span>(<span class="kw">evals</span>(<span class="st">'1:1e5'</span>))</a>
<a class="sourceLine" id="cb13-2" data-line-number="2"><span class="co">#> INFO [2018-11-06 11:17:40] Command run: 1:1e+05</span></a>
<a class="sourceLine" id="cb13-3" data-line-number="3"><span class="co">#> TRACE [2018-11-06 11:17:40] Cached result</span></a>
<a class="sourceLine" id="cb13-4" data-line-number="4"><span class="co">#> DEBUG [2018-11-06 11:17:40] Returned object: class = integer, length = 100000, dim = , size = 400048 bytes</span></a>
<a class="sourceLine" id="cb13-5" data-line-number="5"><span class="co">#> user system elapsed </span></a>
<a class="sourceLine" id="cb13-6" data-line-number="6"><span class="co">#> 0.474 0.011 0.485</span></a>
<a class="sourceLine" id="cb13-7" data-line-number="7"><span class="kw">system.time</span>(<span class="kw">evals</span>(<span class="st">'1:1e5'</span>))</a>
<a class="sourceLine" id="cb13-8" data-line-number="8"><span class="co">#> INFO [2018-11-06 11:17:40] Command run: 1:1e+05</span></a>
<a class="sourceLine" id="cb13-9" data-line-number="9"><span class="co">#> TRACE [2018-11-06 11:17:40] Returning cached R object.</span></a>
<a class="sourceLine" id="cb13-10" data-line-number="10"><span class="co">#> user system elapsed </span></a>
<a class="sourceLine" id="cb13-11" data-line-number="11"><span class="co">#> 0.006 0.000 0.005</span></a></code></pre></div>
<p>Results cached by <code>evals</code> can be stored in an <em>environment</em> in current <code>R</code> session or permanently on disk by setting the <code>cache.mode</code> parameter appropriately.</p>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb14-1" data-line-number="1">res <-<span class="st"> </span><span class="kw">evals</span>(<span class="st">'1:1e5'</span>, <span class="dt">cache.mode =</span> <span class="st">'disk'</span>, <span class="dt">cache.dir =</span> <span class="st">'cachedir'</span>)</a>
<a class="sourceLine" id="cb14-2" data-line-number="2"><span class="co">#> INFO [2018-11-06 11:17:40] Command run: 1:1e+05</span></a>
<a class="sourceLine" id="cb14-3" data-line-number="3"><span class="co">#> TRACE [2018-11-06 11:17:41] Cached result</span></a>
<a class="sourceLine" id="cb14-4" data-line-number="4"><span class="co">#> DEBUG [2018-11-06 11:17:41] Returned object: class = integer, length = 100000, dim = , size = 400048 bytes</span></a>
<a class="sourceLine" id="cb14-5" data-line-number="5"><span class="kw">list.files</span>(<span class="st">'cachedir'</span>)</a>
<a class="sourceLine" id="cb14-6" data-line-number="6"><span class="co">#> [1] "7e8d4836253d5bafc47099163d42856723684ddb"</span></a></code></pre></div>
<p>Since the hash for caching is computed based on the <em>structure</em> and <em>content</em> of the R commands, instead of the variable names or R expressions, <code>evals</code> is able to achieve great results:</p>
<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb15-1" data-line-number="1">x <-<span class="st"> </span>mtcars<span class="op">$</span>hp</a>
<a class="sourceLine" id="cb15-2" data-line-number="2">y <-<span class="st"> </span><span class="fl">1e3</span></a>
<a class="sourceLine" id="cb15-3" data-line-number="3"><span class="kw">system.time</span>(<span class="kw">evals</span>(<span class="st">'sapply(rep(x, y), mean)'</span>))</a>
<a class="sourceLine" id="cb15-4" data-line-number="4"><span class="co">#> INFO [2018-11-06 11:17:41] Command run: sapply(rep(x, y), mean)</span></a>
<a class="sourceLine" id="cb15-5" data-line-number="5"><span class="co">#> TRACE [2018-11-06 11:17:41] Cached result</span></a>
<a class="sourceLine" id="cb15-6" data-line-number="6"><span class="co">#> DEBUG [2018-11-06 11:17:41] Returned object: class = numeric, length = 32000, dim = , size = 256048 bytes</span></a>
<a class="sourceLine" id="cb15-7" data-line-number="7"><span class="co">#> user system elapsed </span></a>
<a class="sourceLine" id="cb15-8" data-line-number="8"><span class="co">#> 0.224 0.000 0.224</span></a></code></pre></div>
<p>Let us create some custom functions and variables, which are not identical to the above call:</p>
<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb16-1" data-line-number="1">f <-<span class="st"> </span>sapply</a>
<a class="sourceLine" id="cb16-2" data-line-number="2">g <-<span class="st"> </span>rep</a>
<a class="sourceLine" id="cb16-3" data-line-number="3">h <-<span class="st"> </span>mean</a>
<a class="sourceLine" id="cb16-4" data-line-number="4">X <-<span class="st"> </span>mtcars<span class="op">$</span>hp <span class="op">*</span><span class="st"> </span><span class="dv">1</span></a>
<a class="sourceLine" id="cb16-5" data-line-number="5">Y <-<span class="st"> </span><span class="dv">1000</span></a>
<a class="sourceLine" id="cb16-6" data-line-number="6"><span class="kw">system.time</span>(<span class="kw">evals</span>(<span class="st">'f(g(X, Y), h)'</span>))</a>
<a class="sourceLine" id="cb16-7" data-line-number="7"><span class="co">#> INFO [2018-11-06 11:17:41] Command run: f(g(X, Y), h)</span></a>
<a class="sourceLine" id="cb16-8" data-line-number="8"><span class="co">#> TRACE [2018-11-06 11:17:41] Returning cached R object.</span></a>
<a class="sourceLine" id="cb16-9" data-line-number="9"><span class="co">#> user system elapsed </span></a>
<a class="sourceLine" id="cb16-10" data-line-number="10"><span class="co">#> 0.009 0.000 0.009</span></a></code></pre></div>
<p>Another important feature of <code>evals</code> is that it notes changes in the evaluation environment. For example:</p>
<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb17-1" data-line-number="1">x <-<span class="st"> </span><span class="dv">1</span></a>
<a class="sourceLine" id="cb17-2" data-line-number="2">res <-<span class="st"> </span><span class="kw">evals</span>(<span class="st">'x <- 1:10;'</span>)</a>
<a class="sourceLine" id="cb17-3" data-line-number="3"><span class="co">#> INFO [2018-11-06 11:17:41] Command run: x <- 1:10</span></a>
<a class="sourceLine" id="cb17-4" data-line-number="4"><span class="co">#> TRACE [2018-11-06 11:17:41] Cached result</span></a></code></pre></div>
<p><code>x <- 1:10</code> will be cached; if the same assignment occurs again we won’t need to evaluate it. But what about the change of <code>x</code> when we get the result from the cache? <code>evals</code> takes care of that.</p>
<p>So in the following example we can see that <code>x <- 1:10</code> is not evaluated, but retrieved from cache with the change to <code>x</code> in the environment.</p>
<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb18-1" data-line-number="1"><span class="kw">evals</span>(<span class="st">'x <- 1:10; x[3]'</span>)[[<span class="dv">2</span>]]<span class="op">$</span>result</a>
<a class="sourceLine" id="cb18-2" data-line-number="2"><span class="co">#> INFO [2018-11-06 11:17:41] Command run: x <- 1:10</span></a>
<a class="sourceLine" id="cb18-3" data-line-number="3"><span class="co">#> TRACE [2018-11-06 11:17:41] Returning cached R object.</span></a>
<a class="sourceLine" id="cb18-4" data-line-number="4"><span class="co">#> INFO [2018-11-06 11:17:41] Command run: x[3]</span></a>
<a class="sourceLine" id="cb18-5" data-line-number="5"><span class="co">#> TRACE [2018-11-06 11:17:41] Cached result</span></a>
<a class="sourceLine" id="cb18-6" data-line-number="6"><span class="co">#> DEBUG [2018-11-06 11:17:41] Returned object: class = integer, length = 1, dim = , size = 56 bytes</span></a>
<a class="sourceLine" id="cb18-7" data-line-number="7"><span class="co">#> [1] 3</span></a></code></pre></div>
<p>Also <code>evals</code> is able to cache output to graphical devices produced during evaluation:</p>
<div class="sourceCode" id="cb19"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb19-1" data-line-number="1"><span class="kw">system.time</span>(<span class="kw">evals</span>(<span class="st">'plot(mtcars)'</span>))</a>
<a class="sourceLine" id="cb19-2" data-line-number="2"><span class="co">#> INFO [2018-11-06 11:17:41] Command run: plot(mtcars)</span></a>
<a class="sourceLine" id="cb19-3" data-line-number="3"><span class="co">#> TRACE [2018-11-06 11:17:42] Image file written: my_plots/test.jpeg</span></a>
<a class="sourceLine" id="cb19-4" data-line-number="4"><span class="co">#> TRACE [2018-11-06 11:17:42] Cached result</span></a>
<a class="sourceLine" id="cb19-5" data-line-number="5"><span class="co">#> user system elapsed </span></a>
<a class="sourceLine" id="cb19-6" data-line-number="6"><span class="co">#> 0.131 0.004 0.135</span></a>
<a class="sourceLine" id="cb19-7" data-line-number="7"><span class="kw">system.time</span>(<span class="kw">evals</span>(<span class="st">'plot(mtcars)'</span>))</a>
<a class="sourceLine" id="cb19-8" data-line-number="8"><span class="co">#> INFO [2018-11-06 11:17:42] Command run: plot(mtcars)</span></a>
<a class="sourceLine" id="cb19-9" data-line-number="9"><span class="co">#> TRACE [2018-11-06 11:17:42] Image found in cache: my_plots/test.jpeg</span></a>
<a class="sourceLine" id="cb19-10" data-line-number="10"><span class="co">#> user system elapsed </span></a>
<a class="sourceLine" id="cb19-11" data-line-number="11"><span class="co">#> 0.008 0.000 0.007</span></a></code></pre></div>
</div>
</div>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>
|