File: olympics.brew

package info (click to toggle)
r-cran-pander 0.6.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,804 kB
  • sloc: javascript: 301; cpp: 145; lisp: 94; makefile: 21
file content (402 lines) | stat: -rw-r--r-- 13,546 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
% Rapporter Development Team
% Predictions about Olympics
% 2012

<%=
## ---------------------------------------------------------------
##
## INTRODUCTION
## ============
##
## This brew file is a POC demo of integrating `pander` in web
## applications. Online demo available at:
##
##     http://demo.rapporter.net
##
## MANUAL USAGE
## ============
##
## Set `u` and `weight` parameter before running this `brew` file!
##
## Example
## -------
##
##    u      <- "ATH-220"
##    weight <- TRUE
##
## ---------------------------------------------------------------

## loading required packages
suppressPackageStartupMessages(library(XML))
suppressWarnings(suppressPackageStartupMessages(library(ggplot2)))
suppressPackageStartupMessages(library(gvlma))

## set options
eO <- evalsOptions()
pO <- panderOptions()
evalsOptions('width', 800)
evalsOptions('height', 600)
evalsOptions('graph.unify', TRUE)
panderOptions('table.split.table', Inf)
panderOptions('graph.symbol', 19)
panderOptions('graph.legend.position', 'top')
if (grepl("w|W", .Platform$OS.type))
    windowsFonts("Trebuchet MS" = windowsFont("Trebuchet MS"))
panderOptions('graph.fontfamily', "Trebuchet MS")
panderOptions('graph.background', 'transparent')

#' Pretty time printing
#' @param sec integer
#' @param transform if set to FALSE the input will be returned without any tweaks
#' @return character in \code{hours:minutes:seconds} format
ms <- function(sec, transform = TRUE) {
    sapply(sec, function(sec) {
        if (is.na(sec))
            return(NA)
        if (transform) {
            if (sec < 60) {
                msec <- sec %% 1
                if (msec == 0)
                    msec <- ''
                else
                    msec <- paste0('.', round(msec, 2) * 100)
            } else
                msec <- ''
            sec <- round(sec)
            minute <- sec %/% 60
            if (minute > 59) {
                sec    <- sprintf("%02d", sec - minute * 60)
                hours  <- minute %/% 60
                minute <- sprintf("%02d", minute - hours * 60)
                paste0(paste(hours, minute, sec, sep=":"), msec)
            } else {
                sec <- sprintf("%02d", sec - minute * 60)
                paste0(paste(minute, sec, sep=":"), msec)
            }
        } else
            round(sec, 2)
    })
}

#' Revert pretty time printing
#' @param text character in \code{hours:minutes:seconds} format
#' @param transform if set to FALSE the input will be returned without any tweaks
#' @return numeric
rms <- function(text, transform = TRUE) {
    sapply(text, function(x) {
        if (transform) {
            x <- as.numeric(strsplit(x, ':')[[1]])
            if (length(x) == 1)
                return(x)
            if (length(x) == 2)
                return(x[1] * 60 + x[2])
            if (length(x) == 3)
                return(x[1] * 60^2 + x[2] * 60 + x[3])
        } else
            round(as.numeric(x), 2)
    }, USE.NAMES = FALSE)
}

#' Plot predictions
#' @param df a data frame with Year, Result columns
#' @param models predefined models' names to plot
plotPredictions <- function(df, models) {

    ## custom options
    panderOptions('graph.fontfamily', "Trebuchet MS")

    ## custom variables - satisfying our DRY needs
    Y         <- df[, 'Year']
    Y2012     <- c(Y, 2012)
    R         <- df[, 'Result']
    allvalues <- unlist(c(R, mget(paste0(models, '.predict'), envir = parent.frame())))
    ff        <- panderOptions('graph.fontfamily')
    fc        <- panderOptions('graph.fontcolor')
    gc        <- panderOptions('graph.colors')
    gt        <- panderOptions('graph.grid.lty')
    gcc       <- panderOptions('graph.grid.color')
    mn        <- mget(paste0(models, '.name'), envir = parent.frame())

    ## custom par settings
    par(
      family   = ff,
      lwd      = 2,
      pch      = panderOptions('graph.symbol'),
      col.axis = fc, col.lab = fc, col.main = fc, col.sub = fc,
      mar = c(3,4,3,3), family = ff, font = 4)

    ## results
    plot(Y, R, ylim = c(min(allvalues), max(allvalues)), xlim = c(min(Y), 2012), xaxt = "n", yaxt= "n", xlab = "", ylab = "", cex.lab = 2, cex.main = 2, cex.axis = 2, cex = 2, pch = 16, bg = "transparent", family = ff, font = 4)

    ## title
    mtext(paste0("Our predictions for the ", df$Event[1]), line = 1, side = 3, family = ff, cex=2, font=4, col ='black')

    ## get y axis's ticks
    ylime <- trunc(c(min(R), max(R)))
    yperiod <- trunc(diff(ylime)/5)
    if (diff(ylime) < 5) {
        ylime   <- round(c(max(R), min(R)), 2)
        yperiod <- round(diff(ylime) / 5, 2)
    }
    ylime   <- c(ylime[1], ylime[1] + 1:5 * yperiod)

    ## draw x axis
    axis(1, at = Y2012, Y2012, cex = 2, family = ff, font=4)
    for (y in Y2012)
        abline(v = y, lty = gt, col = gcc, lwd = 0.5)

    ## draw y axis
    par(las = 1, family = ff)
    axis(2, at = ylime, ms(ylime, resultInTime), cex = 2, family = ff, font=4)
    for (y in ylime)
        abline(h = y, lty = gt, col = gcc, lwd = 0.5)

    points(Y, R)

    ## plotting models' lines & text
    for (m in models) {
        lines(Y2012, get(paste0(m, '.predict')), col = gc[which(m == models)])
        lines(Y2012, get(paste0(m, '.predict')), lwd = get(paste0(m, '.width')), col = paste0(gc[which(m == models)], '44'))
        points(2012, tail(get(paste0(m, '.predict')), 1), pch = 19, col = gc[which(m == models)], cex = 3.5)
        yy  <- tail(get(paste0(m, '.predict')), 1)
        ys  <- ms(yy, resultInTime)
        xx  <- 2012 - strwidth(ys, cex = 1.5)
        text(xx, yy, ys, col = gc[which(m == models)], cex = 1.5)
    }

    ## add a custom legend
    l.pos <- ifelse(yy < mean(R), 'topright', 'bottomright')
    mnames <- unlist(mget(paste0(models, '.name'), envir = parent.frame()), use.names = FALSE)
    legend(l.pos, mnames, lty = rep(1, times = length(models)), pch = rep(19, times = length(models)), col = rep(gc[1:length(models)], times = 2), adj = c(0, .6), cex = 2, text.col = 'black', text.width = strwidth(paste(mnames, collapse = ' ')) * 1.1)
}
%>

<%=
    ## datafile store
    dir.create(file.path(getwd(), 'reports', 'data'), recursive = TRUE, showWarnings = FALSE)
    datafile <- file.path(getwd(), 'reports', 'data', u)

    ## url should be set before calling this `brew` file in a format like: `SWI-240`
    uri <- strsplit(u, '-', fixed = TRUE)[[1]]
    url <- paste0('http://www.databaseolympics.com/sport/sportevent.htm?sp=', uri[1], '&enum=', uri[2])

    ## fetching data from \url{databaseolympics.com} if not cached
    if (!file.exists(datafile)) {
        d <- readHTMLTable(readLines(url, warn = FALSE), which = 2, header = TRUE)
        saveRDS(d, file = datafile)
    } else {
        d <- readRDS(datafile)
    }
%>

<%=
    ## defining events which seem to be invalid
    dEvents         <- tail(as.character(d$Event[d$Event != '']), 1)
    dEvents.invalid <- which(d$Event != dEvents)
%>

<%
if (exists('d')) {
%>

## Welcome!

You have selected **<%=dEvents %>** in this demo without any additional parameters, so we try to guess what are you up to. Let us fit some statistical models on previous results in **<%=dEvents %>** and try to predict the results in 2012 *if we assume* that the performance of the winners, so the forthcoming results also fit the historical data.

### Historical data

We have fetched some data from [databaseolympics.com](<%=url%>):

<%=d%>

<%=
    ## removing events which seem to be invalid
    if (length(dEvents.invalid) > 0)
        d <- d[-dEvents.invalid, ]

    ## just dealing with the winners ATM
    golddata <- subset(d, Medal %in% "GOLD")

    ## removing duplicated rows (we just need the Results)
    if (any(table(golddata['Year']) > 1))
        golddata <- golddata[-which(duplicated(golddata['Year'])), ]

    ## are we dealing with time results?
    resultInTime <- any(grepl(':', golddata$Result))

    ## transforming data
    d$Event            <- as.character(d$Event)
    golddata$Year      <- as.numeric(as.character(golddata$Year))
    years              <- c(as.numeric(as.character(sort(unique(golddata$Year)))), 2012)
    golddata$Result    <- rms(as.character(golddata$Result), resultInTime)
    rownames(golddata) <- NULL
%>

And applied some filters and data transformation on the above database to let us create a data set ready for the below analysis:

<%=
if (weight)
    golddata$weight <- (golddata$Year - min(golddata$Year) + 4) / sum(golddata$Year - min(golddata$Year) + 4) * length(golddata$Year)
golddata
%>

<%
if (nrow(golddata) > 5) {
%>

We do not even need all columns of this table, we will deal only with *Year* and the *Result* below which is eligible to build some simple statistical models to predict the expected results in 2012.

Please note that the below estimates are not based on any causal model, nor we claim it could be accomplished. We just demonstrate: these numbers can be expected leaning solely on prior Olympic records.

<%=
    ## fitting a non-linear model
    if (weight) {
        nonLin     <- suppressWarnings(lm(Result ~ poly(Year, 4), weights = weight, data = golddata))
    } else {
        nonLin     <- suppressWarnings(lm(Result ~ poly(Year, 4), data = golddata))
    }
    nonLin.name    <- 'power prediction'
    nonLin.predict <- suppressWarnings(predict(nonLin, newdata = data.frame(Year = years)))
    nonLin.width   <- (100 - ((1 - mean(summary(nonLin)$coefficients[, "Pr(>|t|)"]))^2 * 100)) + (1 - summary(nonLin)$adj.r.squared) * 100
    golddata2012   <- rbind(golddata, c(2012, rep(NA, times = ncol(golddata)-1)))
    golddata2012$nonLin <- nonLin.predict
    names(nonLin$coefficients )[1:5] <- c('Intercept', 'Year', 'Year^2', 'Year^3', 'Year^4')

    ## fitting a log-linear model
    if (weight) {
        logLin      <- lm(log(Result) ~ Year, weights = weight, data = golddata)
    } else {
        logLin      <- lm(log(Result) ~ Year, data = golddata)
    }
    logLin.name     <- 'simple prediction'
    logLin.predict  <- exp(predict(logLin, newdata = data.frame(Year = years)))
    logLin.width    <- (100 - ((1 - mean(summary(logLin)$coefficients[, "Pr(>|t|)"]))^2 * 100)) + (1 - summary(logLin)$adj.r.squared) * 100
    golddata2012$logLin <- logLin.predict
%>

### Visualized models and predictions

We have built two different models: a log-linear (*simple*) and a non-linear (*power*) one. Weights were <%=ifelse(weight, '', 'not')%> applied.

Both models on a complex plot build with `base` R (actually with `graphics` functions):

<%=
    ## saving options as tweaking some internals
    evalsOptions('graph.unify', FALSE)
%><%=
    ## plotting
    models <- c('nonLin', 'logLin')
    plotPredictions(golddata, models)
%><%=
    ## reset graph unify option
    evalsOptions('graph.unify', TRUE)
%>

Another quick plot themed by our [back-end](http://daroczig.github.com/pander/) building on `ggplot2`:

<%=
g <- ggplot(golddata2012) + geom_point(aes(x=Year, y=Result)) + geom_smooth(aes(x=Year, y=nonLin), alpha=0.2) + geom_smooth(aes(x=Year, y=logLin, col = "#56B4E9"), alpha=0.2, col = "#009E73") + ggtitle(d$Event[1]) + ylab("") + xlab("") + theme_bw() + theme(legend.position = "none")
if (resultInTime)
    g <- g + scale_y_continuous(labels = ms)
g
%>

## The models in more details

### Non-linear model

Fitting a non-linear model on the winning times cannot be easier from a client's point of view with Rapporter:

<%=
    ## printing
    nonLin
%>

#### Validations of the Model Assumptions

And checking the assumptions of the fitted model could be also useful: <%=
a <- summary(gvlma(nonLin))
ifelse(any(a$Decision == 'Assumptions NOT satisfied!'), 'it seems that some assumptions of the model was *not* satisfied!', 'all the assumptions of the model were satisfied!')
%>

In details:

<%=
pandoc.table.return(a, split.tables = Inf)
%>

#### Diagnostic plots

Professional users might find the diagnostic plots of R helpful too. Here you can find a default plot with Rapporter's automatically applied theme:

<%=
par(mfrow = c(2, 2))
+suppressWarnings(plot(nonLin))
%>

But back to the model: the adjusted R-squared equals to <%=summary(nonLin)$adj.r.squared%> with a p-value of <%=round(anova(nonLin)$'Pr(>F)'[1], 5)%>.

<%=anova(nonLin)%>

### Log-linear model

And our log-linear model looks like:

<%=
    ## printing
    logLin
%>

#### Validations of the Model Assumptions

Where <%=
a <- summary(gvlma(logLin))
ifelse(any(a$Decision == 'Assumptions NOT satisfied!'), 'some assumptions were *not* satisfied:', 'the assumptions were satisfied:')
%>

<%=
pandoc.table.return(a, split.tables = Inf)
%>

#### Diagnostic plots

And the diagnostic plots again:

<%=
par(mfrow = c(2, 2))
+suppressWarnings(plot(logLin))
%>

Where the adjusted R-squared equals to <%=summary(logLin)$adj.r.squared%> with a p-value of <%=round(anova(logLin)$'Pr(>F)'[1], 5)%>.

<%=anova(logLin)%>

#### We really hope that you like this short demo, please do not forget to [sign up for our forthcoming next-generation web application](http://rapporter.net) to create your own report!

## Bye!

<% } else { %>

We are really sorry, but we cannot build a model from only *<%=nrow(golddata)%>* result<%=ifelse(nrow(golddata) > 1, 's', '')%> at the Olympics.

**Please try another sport event!**

<% } %>

<% } else { %>

### ERROR

`Database not found.`

Please try again later and report this issue at feedback@rapporter.net.

<% } %>

<%=
    ## resetting options
    for (o in names(eO))
        evalsOptions(o, eO[[o]])
    for (o in names(pO))
        panderOptions(o, pO[[o]])
%>