1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
#' Parallelization setup for parallelMap.
#'
#' Defines the underlying parallelization mode for [parallelMap()]. Also allows
#' to set a \dQuote{level} of parallelization. Only calls to [parallelMap()]
#' with a matching level are parallelized. The defaults of all settings are
#' taken from your options, which you can also define in your R profile. For an
#' introductory tutorial and information on the options configuration, please go
#' to the project's github page at https://github.com/mlr-org/parallelMap.
#'
#' Currently the following modes are supported, which internally dispatch the
#' mapping operation to functions from different parallelization packages:
#'
#' - **local**: No parallelization with [mapply()]
#' - **multicore**: Multicore execution on a single machine with `parallel::mclapply()`.
#' - **socket**: Socket cluster on one or multiple machines with `parallel::makePSOCKcluster()` and `parallel::clusterMap()`.
#' - **mpi**: Snow MPI cluster on one or multiple machines with [parallel::makeCluster()] and `parallel::clusterMap()`.
#' - **BatchJobs**: Parallelization on batch queuing HPC clusters, e.g., Torque, SLURM, etc., with [BatchJobs::batchMap()].
#'
#' For BatchJobs mode you need to define a storage directory through the
#' argument `storagedir` or the option `parallelMap.default.storagedir`.
#'
#' @param mode (`character(1)`)\cr
#' Which parallel mode should be used: \dQuote{local}, \dQuote{multicore},
#' \dQuote{socket}, \dQuote{mpi}, \dQuote{BatchJobs}. Default is the option
#' `parallelMap.default.mode` or, if not set, \dQuote{local} without parallel
#' execution.
#' @param cpus (`integer(1)`)\cr
#' Number of used cpus. For local and BatchJobs mode this argument is ignored.
#' For socket mode, this is the number of processes spawned on localhost, if
#' you want processes on multiple machines use `socket.hosts`. Default is the
#' option `parallelMap.default.cpus` or, if not set, [parallel::detectCores()]
#' for multicore mode, `max(1, [mpi.universe.size][Rmpi::mpi.universe.size] -
#' 1)` for mpi mode and 1 for socket mode.
#' @param socket.hosts [character]\cr
#' Only used in socket mode, otherwise ignored. Names of hosts where parallel
#' processes are spawned. Default is the option
#' `parallelMap.default.socket.hosts`, if this option exists.
#' @param bj.resources [list]\cr
#' Resources like walltime for submitting jobs on HPC clusters via BatchJobs.
#' See [BatchJobs::submitJobs()]. Defaults are taken from your BatchJobs
#' config file.
#' @param bt.resources [list]\cr
#' Analog to `bj.resources`.
#' See [batchtools::submitJobs()].
#' @param logging (`logical(1)`)\cr
#' Should slave output be logged to files via [sink()] under the `storagedir`?
#' Files are named `<iteration_number>.log` and put into unique subdirectories
#' named `parallelMap_log_<nr>` for each subsequent [parallelMap()]
#' operation. Previous logging directories are removed on `parallelStart` if
#' `logging` is enabled. Logging is not supported for local mode, because you
#' will see all output on the master and can also run stuff like [traceback()]
#' in case of errors. Default is the option `parallelMap.default.logging` or,
#' if not set, `FALSE`.
#' @param storagedir (`character(1)`)\cr
#' Existing directory where log files and intermediate objects for BatchJobs
#' mode are stored. Note that all nodes must have write access to exactly this
#' path. Default is the current working directory.
#' @param level (`character(1)`)\cr
#' You can set this so only calls to [parallelMap()] that have exactly the
#' same level are parallelized. Default is the option
#' `parallelMap.default.level` or, if not set, `NA` which means all calls to
#' [parallelMap()] are are potentially parallelized.
#' @param load.balancing (`logical(1)`)\cr
#' Enables load balancing for multicore, socket and mpi.
#' Set this to `TRUE` if you have heterogeneous runtimes.
#' Default is `FALSE`
#' @param show.info (`logical(1)`)\cr
#' Verbose output on console for all further package calls? Default is the
#' option `parallelMap.default.show.info` or, if not set, `TRUE`.
#' @param suppress.local.errors (`logical(1)`)\cr
#' Should reporting of error messages during function evaluations in local
#' mode be suppressed? Default ist FALSE, i.e. every error message is shown.
#' @param reproducible (`logical(1)`)\cr
#' Should parallel jobs produce reproducible results when setting a seed?
#' With this option, `parallelMap()` calls will be reproducible when using
#' `set.seed()` with the default RNG kind. This is not the case by default
#' when parallelizing in R, since the default RNG kind "Mersenne-Twister" is
#' not honored by parallel processes. Instead RNG kind `"L'Ecuyer-CMRG"` needs
#' to be used to ensure paralllel reproducibility.
#' Default is the option `parallelMap.default.reproducible` or, if not set,
#' `TRUE`.
#' @param ... (any)\cr
#' Optional parameters, for socket mode passed to
#' `parallel::makePSOCKcluster()`, for mpi mode passed to
#' [parallel::makeCluster()] and for multicore passed to
#' `parallel::mcmapply()` (`mc.preschedule` (overwriting `load.balancing`),
#' `mc.set.seed`, `mc.silent` and `mc.cleanup` are supported for multicore).
#' @return Nothing.
#' @export
parallelStart = function(mode, cpus, socket.hosts, bj.resources = list(),
bt.resources = list(), logging, storagedir, level, load.balancing = FALSE,
show.info, suppress.local.errors = FALSE, reproducible, ...) {
# if stop was not called, warn and do it now
if (isStatusStarted() && !isModeLocal()) {
warningf("Parallelization was not stopped, doing it now.")
parallelStop()
}
# FIXME: what should we do onexit if an error happens in this function?
mode = getPMDefOptMode(mode)
cpus = getPMDefOptCpus(cpus)
socket.hosts = getPMDefOptSocketHosts(socket.hosts)
reproducible = getPMDefOptReproducible(reproducible)
level = getPMDefOptLevel(level)
rlevls = parallelGetRegisteredLevels(flatten = TRUE)
if (!is.na(level) && level %nin% rlevls) {
warningf(
"Selected level='%s' not registered! This is likely an error! Note that you can also
register custom levels yourself to get rid of this warning, see ?parallelRegisterLevels.R",
level)
}
logging = getPMDefOptLogging(logging)
storagedir = getPMDefOptStorageDir(storagedir)
# defaults are in batchjobs conf
assertList(bj.resources)
assertList(bt.resources)
assertFlag(load.balancing)
show.info = getPMDefOptShowInfo(show.info)
# multicore not supported on windows
if (mode == MODE_MULTICORE && .Platform$OS.type == "windows") {
stop("Multicore mode not supported on windows!")
}
assertDirectoryExists(storagedir, access = "w")
# store options for session, we already need them for helper funs below
options(parallelMap.mode = mode)
options(parallelMap.level = level)
options(parallelMap.logging = logging)
options(parallelMap.storagedir = storagedir)
options(parallelMap.bj.resources = bj.resources)
options(parallelMap.bt.resources = bt.resources)
options(parallelMap.load.balancing = load.balancing)
options(parallelMap.show.info = show.info)
options(parallelMap.status = STATUS_STARTED)
options(parallelMap.nextmap = 1L)
options(parallelMap.suppress.local.errors = suppress.local.errors)
options(parallelMap.reproducible = reproducible)
# try to autodetect cpus if not set
if (is.na(cpus) && mode %in% c(MODE_MULTICORE, MODE_MPI)) {
cpus = autodetectCpus(mode)
}
if (isModeSocket()) {
if (!is.na(cpus) && !is.null(socket.hosts)) {
stopf("You cannot set both cpus and socket.hosts in socket mode!")
}
if (is.na(cpus) && is.null(socket.hosts)) {
cpus = 1L
}
}
if (isModeLocal()) {
if (!is.na(cpus)) {
stopf("Setting %i cpus makes no sense for local mode!", cpus)
}
}
options(parallelMap.cpus = cpus)
showStartupMsg(mode, cpus, socket.hosts)
# now load extra packs we need
requirePackages(getExtraPackages(mode), why = "parallelStart")
# delete log dirs from previous runs
if (logging) {
if (isModeLocal()) {
stop("Logging not supported for local mode!")
}
deleteAllLogDirs()
}
# init parallel packs / modes, if necessary
if (isModeMulticore()) {
args = list(...)
args$mc.preschedule = args$mc.preschedule %??% !load.balancing
cl = do.call(makeMulticoreCluster, args)
} else if (isModeSocket()) {
# set names from cpus or socket.hosts, only 1 can be defined here
if (is.na(cpus)) {
names = socket.hosts
} else {
names = cpus
}
cl = makePSOCKcluster(names = names, ...)
if (reproducible) {
clusterSetRNGStream(cl, iseed = sample(1:100000, 1))
}
setDefaultCluster(cl)
} else if (isModeMPI()) {
cl = makeCluster(spec = cpus, type = "MPI", ...)
if (reproducible) {
clusterSetRNGStream(cl, iseed = sample(1:100000, 1))
}
setDefaultCluster(cl)
} else if (isModeBatchJobs()) {
# create registry in selected directory with random, unique name
fd = getBatchJobsNewRegFileDir()
suppressMessages({
BatchJobs::makeRegistry(id = basename(fd), file.dir = fd, work.dir = getwd())
})
} else if (isModeBatchtools()) {
fd = getBatchtoolsNewRegFileDir()
old = getOption("batchtools.verbose")
options(batchtools.verbose = FALSE)
on.exit(options(batchtools.verbose = old))
reg = batchtools::makeRegistry(file.dir = fd, work.dir = getwd())
}
invisible(NULL)
}
#' @export
#' @rdname parallelStart
parallelStartLocal = function(show.info, suppress.local.errors = FALSE, ...) {
parallelStart(
mode = MODE_LOCAL, cpus = NA_integer_, level = NA_character_,
logging = FALSE, show.info = show.info,
suppress.local.errors = suppress.local.errors, ...)
}
#' @export
#' @rdname parallelStart
parallelStartMulticore = function(cpus, logging, storagedir, level,
load.balancing = FALSE, show.info, reproducible, ...) {
parallelStart(
mode = MODE_MULTICORE, cpus = cpus, level = level,
logging = logging, storagedir = storagedir, load.balancing = load.balancing,
show.info = show.info, reproducible = reproducible, ...)
}
#' @export
#' @rdname parallelStart
parallelStartSocket = function(cpus, socket.hosts, logging, storagedir, level,
load.balancing = FALSE, show.info, reproducible, ...) {
parallelStart(
mode = MODE_SOCKET, cpus = cpus, socket.hosts = socket.hosts,
level = level, logging = logging, storagedir = storagedir,
load.balancing = load.balancing, show.info = show.info,
reproducible = reproducible, ...)
}
#' @export
#' @rdname parallelStart
parallelStartMPI = function(cpus, logging, storagedir, level,
load.balancing = FALSE, show.info, reproducible, ...) {
parallelStart(
mode = MODE_MPI, cpus = cpus, level = level, logging = logging,
storagedir = storagedir, load.balancing = load.balancing,
show.info = show.info, reproducible = reproducible, ...)
}
#' @export
#' @rdname parallelStart
parallelStartBatchJobs = function(bj.resources = list(), logging, storagedir, level, show.info, ...) {
parallelStart(
mode = MODE_BATCHJOBS, level = level, logging = logging,
storagedir = storagedir, bj.resources = bj.resources, show.info = show.info, ...)
}
#' @export
#' @rdname parallelStart
parallelStartBatchtools = function(bt.resources = list(), logging, storagedir, level, show.info, ...) {
parallelStart(
mode = MODE_BATCHTOOLS, level = level, logging = logging,
storagedir = storagedir, bt.resources = bt.resources, show.info = show.info, ...)
}
|