1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
#' @title p-values
#' @name p_value
#'
#' @description This function attempts to return, or compute, p-values of a model's
#' parameters.
#'
#' @param model A statistical model.
#' @param adjust Character value naming the method used to adjust p-values or
#' confidence intervals. See `?emmeans::summary.emmGrid` for details.
#' @param ... Additional arguments
#' @inheritParams ci.default
#' @inheritParams standard_error.default
#'
#' @inheritSection model_parameters Confidence intervals and approximation of degrees of freedom
#'
#' @inheritSection model_parameters.zcpglm Model components
#'
#' @details
#' For Bayesian models, the p-values corresponds to the *probability of
#' direction* ([`bayestestR::p_direction()`]), which is converted to a p-value
#' using `bayestestR::convert_pd_to_p()`.
#'
#' @return A data frame with at least two columns: the parameter names and the
#' p-values. Depending on the model, may also include columns for model
#' components etc.
#'
#' @examplesIf require("pscl", quietly = TRUE)
#' data(iris)
#' model <- lm(Petal.Length ~ Sepal.Length + Species, data = iris)
#' p_value(model)
#'
#' data("bioChemists", package = "pscl")
#' model <- pscl::zeroinfl(
#' art ~ fem + mar + kid5 | kid5 + phd,
#' data = bioChemists
#' )
#' p_value(model)
#' p_value(model, component = "zi")
#' @export
p_value <- function(model, ...) {
UseMethod("p_value")
}
# p-Values from Standard Models -----------------------------------------------
#' @rdname p_value
#' @export
p_value.default <- function(model,
dof = NULL,
method = NULL,
component = "all",
vcov = NULL,
vcov_args = NULL,
verbose = TRUE,
...) {
# check for valid input
.is_model_valid(model)
dots <- list(...)
p <- NULL
if (is.character(method)) {
method <- tolower(method)
} else {
method <- "wald"
}
# robust standard errors
if (!is.null(vcov)) {
method <- "robust"
}
# default p-value method for profiled or uniroot CI
if (method %in% c("uniroot", "profile", "likelihood", "boot")) {
method <- "normal"
}
if (method == "ml1") {
return(p_value_ml1(model))
}
if (method == "betwithin") {
return(p_value_betwithin(model))
}
if (method %in% c("residual", "wald", "normal", "satterthwaite", "kenward", "kr")) {
if (is.null(dof)) {
dof <- insight::get_df(x = model, type = method, verbose = FALSE)
}
return(.p_value_dof(
model,
dof = dof,
method = method,
component = component,
verbose = verbose,
...
))
}
if (method %in% c("hdi", "eti", "si", "bci", "bcai", "quantile")) {
return(bayestestR::p_direction(model, ...))
}
# robust standard errors
if (method == "robust") {
co <- insight::get_parameters(model)
# for polr, we need to fix parameter names
co$Parameter <- gsub("Intercept: ", "", co$Parameter, fixed = TRUE)
# this allows us to pass the output of `standard_error()`
# to the `vcov` argument in order to avoid computing the SE twice.
if (inherits(vcov, "data.frame") || "SE" %in% colnames(vcov)) {
se <- vcov
} else {
fun_args <- list(model,
vcov_args = vcov_args,
vcov = vcov,
verbose = verbose
)
fun_args <- c(fun_args, dots)
se <- do.call("standard_error", fun_args)
}
dof <- insight::get_df(x = model, type = "wald", verbose = FALSE)
se <- merge(se, co, sort = FALSE)
se$Statistic <- se$Estimate / se$SE
se$p <- 2 * stats::pt(abs(se$Statistic), df = dof, lower.tail = FALSE)
p <- stats::setNames(se$p, se$Parameter)
}
# default 1st try: summary()
if (is.null(p)) {
p <- .safe({
# Zelig-models are weird
if (grepl("Zelig-", class(model)[1], fixed = TRUE)) {
unlist(model$get_pvalue())
} else {
# try to get p-value from classical summary for default models
.get_pval_from_summary(model)
}
})
}
# default 2nd try: p value from test-statistic
if (is.null(p)) {
p <- .safe({
stat <- insight::get_statistic(model)
p_from_stat <- 2 * stats::pt(abs(stat$Statistic), df = Inf, lower.tail = FALSE)
names(p_from_stat) <- stat$Parameter
p_from_stat
})
}
# failure warning
if (is.null(p)) {
if (isTRUE(verbose)) {
insight::format_warning("Could not extract p-values from model object.")
}
return(NULL)
}
# output
params <- insight::get_parameters(model, component = component)
if (length(p) == nrow(params) && "Component" %in% colnames(params)) {
.data_frame(Parameter = params$Parameter, p = as.vector(p), Component = params$Component)
} else {
.data_frame(Parameter = names(p), p = as.vector(p))
}
}
# helper --------------------------------------------------------
.get_pval_from_summary <- function(model, cs = NULL) {
if (is.null(cs)) cs <- suppressWarnings(stats::coef(summary(model)))
p <- NULL
if (ncol(cs) >= 4) {
# do we have a p-value column based on t?
pvcn <- which(colnames(cs) == "Pr(>|t|)")
# if not, do we have a p-value column based on z?
if (length(pvcn) == 0) {
pvcn <- which(colnames(cs) == "Pr(>|z|)")
}
# if not, default to 4
if (length(pvcn) == 0) {
pvcn <- 4
}
p <- cs[, pvcn]
if (is.null(names(p))) {
coef_names <- rownames(cs)
if (length(coef_names) == length(p)) {
names(p) <- coef_names
}
}
}
names(p) <- .remove_backticks_from_string(names(p))
p
}
|