File: 5_simulate_model.R

package info (click to toggle)
r-cran-parameters 0.24.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,852 kB
  • sloc: sh: 16; makefile: 2
file content (285 lines) | stat: -rw-r--r-- 7,887 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#' @title Simulated draws from model coefficients
#' @name simulate_model
#'
#' @description Simulate draws from a statistical model to return a data frame
#' of estimates.
#'
#' @param model Statistical model (no Bayesian models).
#' @param component Should all parameters, parameters for the conditional model,
#'   for the zero-inflation part of the model, or the dispersion model be returned?
#'   Applies to models with zero-inflation and/or dispersion component. `component`
#'   may be one of `"conditional"`, `"zi"`, `"zero-inflated"`, `"dispersion"` or
#'    `"all"` (default). May be abbreviated.
#' @param ... Arguments passed to [`insight::get_varcov()`], e.g. to allow simulated
#' draws to be based on heteroscedasticity consistent variance covariance matrices.
#' @inheritParams bootstrap_model
#' @inheritParams p_value
#'
#' @inheritSection model_parameters.zcpglm Model components
#'
#' @return A data frame.
#'
#' @seealso [`simulate_parameters()`], [`bootstrap_model()`], [`bootstrap_parameters()`]
#'
#' @details
#' ## Technical Details
#' `simulate_model()` is a computationally faster alternative
#' to `bootstrap_model()`. Simulated draws for coefficients are based
#' on a multivariate normal distribution (`MASS::mvrnorm()`) with mean
#' `mu = coef(model)` and variance `Sigma = vcov(model)`.
#'
#' ## Models with Zero-Inflation Component
#' For models from packages **glmmTMB**, **pscl**, **GLMMadaptive** and
#' **countreg**, the `component` argument can be used to specify
#' which parameters should be simulated. For all other models, parameters
#' from the conditional component (fixed effects) are simulated. This may
#' include smooth terms, but not random effects.
#'
#' @examples
#' model <- lm(Sepal.Length ~ Species * Petal.Width + Petal.Length, data = iris)
#' head(simulate_model(model))
#' \donttest{
#' if (require("glmmTMB", quietly = TRUE)) {
#'   model <- glmmTMB(
#'     count ~ spp + mined + (1 | site),
#'     ziformula = ~mined,
#'     family = poisson(),
#'     data = Salamanders
#'   )
#'   head(simulate_model(model))
#'   head(simulate_model(model, component = "zero_inflated"))
#' }
#' }
#' @export
simulate_model <- function(model, iterations = 1000, ...) {
  UseMethod("simulate_model")
}


# Models with single component only -----------------------------------------

#' @rdname simulate_model
#' @export
simulate_model.default <- function(model, iterations = 1000, component = "all", ...) {
  # check for valid input
  .is_model_valid(model)

  out <- .simulate_model(model, iterations, component = "conditional", effects = "fixed", ...)

  class(out) <- c("parameters_simulate_model", class(out))
  attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(model))
  out
}


#' @export
simulate_model.lm <- simulate_model.default

#' @export
simulate_model.glmmadmb <- simulate_model.default

#' @export
simulate_model.cglm <- simulate_model.default

#' @export
simulate_model.cpglm <- simulate_model.default

#' @export
simulate_model.cpglmm <- simulate_model.default

#' @export
simulate_model.feglm <- simulate_model.default

#' @export
simulate_model.fixest <- simulate_model.default

#' @export
simulate_model.iv_robust <- simulate_model.default

#' @export
simulate_model.rq <- simulate_model.default

#' @export
simulate_model.crq <- simulate_model.default

#' @export
simulate_model.nlrq <- simulate_model.default

#' @export
simulate_model.speedglm <- simulate_model.default

#' @export
simulate_model.speedlm <- simulate_model.default

#' @export
simulate_model.glm <- simulate_model.default

#' @export
simulate_model.glmRob <- simulate_model.default

#' @export
simulate_model.lmRob <- simulate_model.default

#' @export
simulate_model.gls <- simulate_model.default

#' @export
simulate_model.lme <- simulate_model.default

#' @export
simulate_model.crch <- simulate_model.default

#' @export
simulate_model.biglm <- simulate_model.default

#' @export
simulate_model.plm <- simulate_model.default

#' @export
simulate_model.flexsurvreg <- simulate_model.default

#' @export
simulate_model.LORgee <- simulate_model.default

#' @export
simulate_model.feis <- simulate_model.default

#' @export
simulate_model.lmrob <- simulate_model.default

#' @export
simulate_model.glmrob <- simulate_model.default

#' @export
simulate_model.merMod <- simulate_model.default

#' @export
simulate_model.gamlss <- simulate_model.default

#' @export
simulate_model.lm_robust <- simulate_model.default

#' @export
simulate_model.coxme <- simulate_model.default

#' @export
simulate_model.geeglm <- simulate_model.default

#' @export
simulate_model.gee <- simulate_model.default

#' @export
simulate_model.clm <- simulate_model.default

#' @export
simulate_model.polr <- simulate_model.default

#' @export
simulate_model.coxph <- simulate_model.default

#' @export
simulate_model.logistf <- simulate_model.default

#' @export
simulate_model.flic <- simulate_model.default

#' @export
simulate_model.flac <- simulate_model.default

#' @export
simulate_model.truncreg <- simulate_model.default

#' @export
simulate_model.glimML <- simulate_model.default

#' @export
simulate_model.lrm <- simulate_model.default

#' @export
simulate_model.psm <- simulate_model.default

#' @export
simulate_model.ols <- simulate_model.default

#' @export
simulate_model.rms <- simulate_model.default

#' @export
simulate_model.vglm <- simulate_model.default

#' @export
simulate_model.censReg <- simulate_model.default

#' @export
simulate_model.survreg <- simulate_model.default

#' @export
simulate_model.multinom <- simulate_model.default

#' @export
simulate_model.brmultinom <- simulate_model.default

#' @export
simulate_model.bracl <- simulate_model.default


# helper -----------------------------------------


.simulate_model <- function(model,
                            iterations,
                            component = "conditional",
                            effects = "fixed",
                            ...) {
  if (is.null(iterations)) iterations <- 1000

  params <- insight::get_parameters(model, effects = effects, component = component, verbose = FALSE)
  beta_mu <- stats::setNames(params$Estimate, params$Parameter) # Transform to named vector

  # "..." allow specification of vcov-args (#784)
  varcov <- insight::get_varcov(model, component = component, effects = effects, ...)
  as.data.frame(.mvrnorm(n = iterations, mu = beta_mu, Sigma = varcov))

  ## Alternative approach, similar to arm::sim()

  # k <- length(insight::find_parameters(model, effects = "fixed", component = "conditional", flatten = TRUE))
  # n <- insight::n_obs(model)
  # beta.cov <- stats::vcov(model) / stats::sigma(model)
  # s <- vector("double", iterations)
  # b <- array(NA, c(100, k))
  # for (i in 1:iterations) {
  #   s[i] <- stats::sigma(model) * sqrt((n - k) / rchisq(1, n - k))
  #   b[i,] <- .mvrnorm(n = 1, mu = beta_mu, Sigma = beta.cov * s[i] ^ 2)
  # }
}

.mvrnorm <- function(n = 1, mu, Sigma, tol = 1e-06) {
  p <- length(mu)
  if (!all(dim(Sigma) == c(p, p))) {
    insight::format_error(
      "Incompatible arguments to calculate multivariate normal distribution."
    )
  }

  eS <- eigen(Sigma, symmetric = TRUE)
  ev <- eS$values

  if (!all(ev >= -tol * abs(ev[1L]))) {
    insight::format_error("`Sigma` is not positive definite.")
  }

  X <- drop(mu) + eS$vectors %*% diag(sqrt(pmax(ev, 0)), p) %*% t(matrix(stats::rnorm(p * n), n))
  nm <- names(mu)

  dn <- dimnames(Sigma)
  if (is.null(nm) && !is.null(dn)) {
    nm <- dn[[1L]]
  }

  dimnames(X) <- list(nm, NULL)
  if (n == 1) {
    drop(X)
  } else {
    t(X)
  }
}