1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
#' Model bootstrapping
#'
#' Bootstrap a statistical model n times to return a data frame of estimates.
#'
#' @param model Statistical model.
#' @param iterations The number of draws to simulate/bootstrap.
#' @param type Character string specifying the type of bootstrap. For mixed models
#' of class `merMod` or `glmmTMB`, may be `"parametric"` (default) or
#' `"semiparametric"` (see `?lme4::bootMer` for details). For all
#' other models, see argument `sim` in `?boot::boot` (defaults to
#' `"ordinary"`).
#' @param parallel The type of parallel operation to be used (if any).
#' @param n_cpus Number of processes to be used in parallel operation.
#' @param cluster Optional cluster when `parallel = "snow"`. See `?lme4::bootMer`
#' for details.
#' @param ... Arguments passed to or from other methods.
#' @inheritParams p_value
#'
#' @return A data frame of bootstrapped estimates.
#'
#' @details By default, `boot::boot()` is used to generate bootstraps from
#' the model data, which are then used to `update()` the model, i.e. refit
#' the model with the bootstrapped samples. For `merMod` objects (**lme4**)
#' or models from **glmmTMB**, the `lme4::bootMer()` function is used to
#' obtain bootstrapped samples. `bootstrap_parameters()` summarizes the
#' bootstrapped model estimates.
#'
#' @section Using with **emmeans**:
#' The output can be passed directly to the various functions from the
#' **emmeans** package, to obtain bootstrapped estimates, contrasts, simple
#' slopes, etc. and their confidence intervals. These can then be passed to
#' `model_parameter()` to obtain standard errors, p-values, etc. (see
#' example).
#'
#' Note that that p-values returned here are estimated under the assumption of
#' *translation equivariance*: that shape of the sampling distribution is
#' unaffected by the null being true or not. If this assumption does not hold,
#' p-values can be biased, and it is suggested to use proper permutation tests
#' to obtain non-parametric p-values.
#'
#' @seealso [`bootstrap_parameters()`], [`simulate_model()`], [`simulate_parameters()`]
#'
#' @examplesIf require("boot", quietly = TRUE) && require("emmeans", quietly = TRUE)
#' \donttest{
#' model <- lm(mpg ~ wt + factor(cyl), data = mtcars)
#' b <- bootstrap_model(model)
#' print(head(b))
#'
#' est <- emmeans::emmeans(b, consec ~ cyl)
#' print(model_parameters(est))
#' }
#' @export
bootstrap_model <- function(model,
iterations = 1000,
...) {
UseMethod("bootstrap_model")
}
#' @rdname bootstrap_model
#' @export
bootstrap_model.default <- function(model,
iterations = 1000,
type = "ordinary",
parallel = "no",
n_cpus = 1,
cluster = NULL,
verbose = FALSE,
...) {
# check for valid input
.is_model_valid(model)
insight::check_if_installed("boot")
type <- insight::validate_argument(
type,
c("ordinary", "parametric", "balanced", "permutation", "antithetic")
)
parallel <- insight::validate_argument(parallel, c("no", "multicore", "snow"))
model_data <- data <- insight::get_data(model, verbose = FALSE) # nolint
model_response <- insight::find_response(model)
boot_function <- function(model, data, indices) {
d <- data[indices, ] # allows boot to select sample
if (inherits(model, "biglm")) {
fit <- suppressMessages(stats::update(model, moredata = d))
} else if (verbose) {
fit <- stats::update(model, data = d)
} else {
fit <- suppressMessages(stats::update(model, data = d))
}
params <- insight::get_parameters(fit, verbose = FALSE)
n_params <- insight::n_parameters(model)
if (nrow(params) != n_params) {
params <- stats::setNames(rep.int(NA, n_params), params$Parameter)
} else {
params <- stats::setNames(params$Estimate, params$Parameter) # Transform to named vector
}
params
}
if (type == "parametric") {
f <- function(x, mle) {
out <- model_data
resp <- stats::simulate(x, nsim = 1)
out[[model_response]] <- resp
out
}
results <- boot::boot(
data = data,
statistic = boot_function,
R = iterations,
sim = type,
parallel = parallel,
ncpus = n_cpus,
model = model,
ran.gen = f
)
} else {
results <- boot::boot(
data = data,
statistic = boot_function,
R = iterations,
sim = type,
parallel = parallel,
ncpus = n_cpus,
model = model
)
}
out <- as.data.frame(results$t)
out <- out[stats::complete.cases(out), ]
names(out) <- insight::get_parameters(model, verbose = FALSE)$Parameter
class(out) <- unique(c("bootstrap_model", "see_bootstrap_model", class(out)))
attr(out, "original_model") <- model
out
}
#' @export
bootstrap_model.merMod <- function(model,
iterations = 1000,
type = "parametric",
parallel = "no",
n_cpus = 1,
cluster = NULL,
verbose = FALSE,
...) {
insight::check_if_installed("lme4")
type <- insight::validate_argument(type, c("parametric", "semiparametric"))
parallel <- insight::validate_argument(parallel, c("no", "multicore", "snow"))
boot_function <- function(model) {
params <- insight::get_parameters(model, verbose = FALSE)
n_params <- insight::n_parameters(model)
# for glmmTMB, remove dispersion paramters, if any
if (inherits(model, "glmmTMB") && "Component" %in% names(params) && "dispersion" %in% params$Component) {
# find number of dispersion parameters
n_disp <- sum(params$Component == "dispersion")
# remove dispersion parameters
params <- params[params$Component != "dispersion", ]
# make sure number of parameters is updated
n_params <- n_params - n_disp
}
if (nrow(params) != n_params) {
params <- stats::setNames(rep.int(NA, n_params), params$Parameter)
} else {
params <- stats::setNames(params$Estimate, params$Parameter) # Transform to named vector
}
params
}
if (verbose) {
results <- lme4::bootMer(
model,
boot_function,
nsim = iterations,
type = type,
parallel = parallel,
ncpus = n_cpus,
cl = cluster
)
} else {
results <- suppressMessages(lme4::bootMer(
model,
boot_function,
nsim = iterations,
verbose = FALSE,
type = type,
parallel = parallel,
ncpus = n_cpus,
cl = cluster
))
}
out <- as.data.frame(results$t)
out <- out[stats::complete.cases(out), ]
names(out) <- insight::find_parameters(model, effects = "fixed")$conditional
class(out) <- unique(c("bootstrap_model", "see_bootstrap_model", class(out)))
attr(out, "original_model") <- model
out
}
#' @export
bootstrap_model.glmmTMB <- bootstrap_model.merMod
#' @export
bootstrap_model.nestedLogit <- function(model,
iterations = 1000,
type = "ordinary",
parallel = "no",
n_cpus = 1,
verbose = FALSE,
...) {
insight::check_if_installed("boot")
type <- insight::validate_argument(
type,
c("ordinary", "balanced", "permutation", "antithetic")
)
parallel <- insight::validate_argument(parallel, c("no", "multicore", "snow"))
model_data <- data <- insight::get_data(model, verbose = FALSE) # nolint
model_response <- insight::find_response(model)
boot_function <- function(model, data, indices) {
d <- data[indices, ] # allows boot to select sample
if (verbose) {
fit <- stats::update(model, data = d)
} else {
fit <- suppressMessages(stats::update(model, data = d))
}
params <- insight::get_parameters(fit, verbose = FALSE)
stats::setNames(params$Estimate, params$Parameter) # Transform to named vector
}
results <- boot::boot(
data = data,
statistic = boot_function,
R = iterations,
sim = type,
parallel = parallel,
ncpus = n_cpus,
model = model
)
out <- as.data.frame(results$t)
out <- out[stats::complete.cases(out), ]
params <- insight::get_parameters(model, verbose = FALSE)
names(out) <- paste0(params$Parameter, ".", params$Component)
class(out) <- unique(c("bootstrap_model", "see_bootstrap_model", class(out)))
attr(out, "original_model") <- model
out
}
|