1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
|
#' Cluster Analysis
#'
#' Compute hierarchical or kmeans cluster analysis and return the group
#' assignment for each observation as vector.
#'
#' @references
#' - Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2014) cluster: Cluster
#' Analysis Basics and Extensions. R package.
#'
#' @param x A data frame (with at least two variables), or a matrix (with at
#' least two columns).
#' @param n Number of clusters used for supervised cluster methods. If `NULL`,
#' the number of clusters to extract is determined by calling [`n_clusters()`].
#' Note that this argument does not apply for unsupervised clustering methods
#' like `dbscan`, `hdbscan`, `mixture`, `pvclust`, or `pamk`.
#' @param method Method for computing the cluster analysis. Can be `"kmeans"`
#' (default; k-means using `kmeans()`), `"hkmeans"` (hierarchical k-means
#' using `factoextra::hkmeans()`), `pam` (K-Medoids using `cluster::pam()`),
#' `pamk` (K-Medoids that finds out the number of clusters), `"hclust"`
#' (hierarchical clustering using `hclust()` or `pvclust::pvclust()`),
#' `dbscan` (DBSCAN using `dbscan::dbscan()`), `hdbscan` (Hierarchical DBSCAN
#' using `dbscan::hdbscan()`), or `mixture` (Mixture modeling using
#' `mclust::Mclust()`, which requires the user to run `library(mclust)`
#' before).
#' @param distance_method Distance measure to be used for methods based on
#' distances (e.g., when `method = "hclust"` for hierarchical clustering. For
#' other methods, such as `"kmeans"`, this argument will be ignored). Must be
#' one of `"euclidean"`, `"maximum"`, `"manhattan"`, `"canberra"`, `"binary"`
#' or `"minkowski"`. See [`dist()`] and `pvclust::pvclust()` for more
#' information.
#' @param hclust_method Agglomeration method to be used when `method = "hclust"`
#' or `method = "hkmeans"` (for hierarchical clustering). This should be one
#' of `"ward"`, `"ward.D2"`, `"single"`, `"complete"`, `"average"`,
#' `"mcquitty"`, `"median"` or `"centroid"`. Default is `"complete"` (see
#' [`hclust()`]).
#' @param kmeans_method Algorithm used for calculating kmeans cluster. Only applies,
#' if `method = "kmeans"`. May be one of `"Hartigan-Wong"` (default),
#' `"Lloyd"` (used by SPSS), or `"MacQueen"`. See [`kmeans()`] for details on
#' this argument.
#' @param iterations The number of replications.
#' @param dbscan_eps The `eps` argument for DBSCAN method. See [`n_clusters_dbscan()`].
#'
#' @inheritParams equivalence_test.lm
#' @inheritParams n_clusters
#'
#' @return The group classification for each observation as vector. The
#' returned vector includes missing values, so it has the same length
#' as `nrow(x)`.
#'
#' @note
#' There is also a [`plot()`-method](https://easystats.github.io/see/articles/parameters.html)
#' implemented in the [**see**-package](https://easystats.github.io/see/).
#'
#' @details
#' The `print()` and `plot()` methods show the (standardized) mean value for
#' each variable within each cluster. Thus, a higher absolute value indicates
#' that a certain variable characteristic is more pronounced within that
#' specific cluster (as compared to other cluster groups with lower absolute
#' mean values).
#'
#' Clusters classification can be obtained via `print(x, newdata = NULL, ...)`.
#'
#' @seealso
#' - [`n_clusters()`] to determine the number of clusters to extract.
#' - [`cluster_discrimination()`] to determine the accuracy of cluster group
#' classification via linear discriminant analysis (LDA).
#' - [`performance::check_clusterstructure()`] to check suitability of data
#' for clustering.
#' - https://www.datanovia.com/en/lessons/
#'
#' @examples
#' set.seed(33)
#' # K-Means ====================================================
#' rez <- cluster_analysis(iris[1:4], n = 3, method = "kmeans")
#' rez # Show results
#' predict(rez) # Get clusters
#' summary(rez) # Extract the centers values (can use 'plot()' on that)
#' if (requireNamespace("MASS", quietly = TRUE)) {
#' cluster_discrimination(rez) # Perform LDA
#' }
#'
#' # Hierarchical k-means (more robust k-means)
#' if (require("factoextra", quietly = TRUE)) {
#' rez <- cluster_analysis(iris[1:4], n = 3, method = "hkmeans")
#' rez # Show results
#' predict(rez) # Get clusters
#' }
#'
#' # Hierarchical Clustering (hclust) ===========================
#' rez <- cluster_analysis(iris[1:4], n = 3, method = "hclust")
#' rez # Show results
#' predict(rez) # Get clusters
#'
#' # K-Medoids (pam) ============================================
#' if (require("cluster", quietly = TRUE)) {
#' rez <- cluster_analysis(iris[1:4], n = 3, method = "pam")
#' rez # Show results
#' predict(rez) # Get clusters
#' }
#'
#' # PAM with automated number of clusters
#' if (require("fpc", quietly = TRUE)) {
#' rez <- cluster_analysis(iris[1:4], method = "pamk")
#' rez # Show results
#' predict(rez) # Get clusters
#' }
#'
#' # DBSCAN ====================================================
#' if (require("dbscan", quietly = TRUE)) {
#' # Note that you can assimilate more outliers (cluster 0) to neighbouring
#' # clusters by setting borderPoints = TRUE.
#' rez <- cluster_analysis(iris[1:4], method = "dbscan", dbscan_eps = 1.45)
#' rez # Show results
#' predict(rez) # Get clusters
#' }
#'
#' # Mixture ====================================================
#' if (require("mclust", quietly = TRUE)) {
#' library(mclust) # Needs the package to be loaded
#' rez <- cluster_analysis(iris[1:4], method = "mixture")
#' rez # Show results
#' predict(rez) # Get clusters
#' }
#' @export
cluster_analysis <- function(x,
n = NULL,
method = "kmeans",
include_factors = FALSE,
standardize = TRUE,
verbose = TRUE,
distance_method = "euclidean",
hclust_method = "complete",
kmeans_method = "Hartigan-Wong",
dbscan_eps = 15,
iterations = 100,
...) {
# match arguments
method <- match.arg(
method,
choices = c("kmeans", "hkmeans", "pam", "pamk", "hclust", "dbscan", "hdbscan", "mixture"),
several.ok = TRUE
)
# Preparation -------------------------------------------------------------
# coerce to data frame if input is a matrix
if (is.matrix(x)) {
x <- as.data.frame(x)
}
# validation check - needs data frame
if (!is.data.frame(x)) {
insight::format_error("`x` needs to be a data frame.")
}
# validation check - need at least two columns
if (ncol(x) < 2) {
insight::format_error("At least two variables required to compute a cluster analysis.")
}
# check if we have a correlation/covariance or distance matrix?
if (nrow(x) == ncol(x) && identical(round(x[lower.tri(x)], 10), round(x[upper.tri(x)], 10))) {
## TODO: special handling
insight::format_warning(
"Input data seems to be a correlation, covariance or similar matrix."
)
}
# Preprocess data
cluster_data <- .prepare_data_clustering(x, include_factors = include_factors, standardize = standardize, ...)
# Get number of clusters
if (is.null(n) && any(method %in% c("kmeans", "hkmeans", "pam"))) {
n <- tryCatch(
{
nc <- n_clusters(cluster_data, standardize = FALSE, ...)
n <- attributes(nc)$n
if (verbose) {
insight::print_color(sprintf(
"Using solution with %i clusters, supported by %i out of %i methods.\n",
n,
max(summary(nc)$n_Methods),
sum(summary(nc)$n_Methods)
), "blue")
}
n
},
error = function(e) {
if (isTRUE(verbose)) {
insight::format_error(
"Could not extract number of clusters. Please provide argument `n`."
)
}
2
}
)
}
# Apply clustering --------------------------------------------------------
if (any(method == "kmeans")) {
rez <- .cluster_analysis_kmeans(
cluster_data,
n = n,
kmeans_method = kmeans_method,
iterations = iterations,
...
)
} else if (any(method == "hkmeans")) {
rez <- .cluster_analysis_hkmeans(
cluster_data,
n = n,
kmeans_method = kmeans_method,
hclust_method = hclust_method,
iterations = iterations, ...
)
} else if (any(method == "pam")) {
rez <- .cluster_analysis_pam(
cluster_data,
n = n,
distance_method = distance_method,
...
)
} else if (any(method == "pamk")) {
rez <- .cluster_analysis_pamk(
cluster_data,
distance_method = distance_method,
...
)
} else if (any(method == "hclust")) {
rez <- .cluster_analysis_hclust(
cluster_data,
n = n,
distance_method = distance_method,
hclust_method = hclust_method,
iterations = iterations,
...
)
} else if (any(method == "dbscan")) {
rez <- .cluster_analysis_dbscan(
cluster_data,
dbscan_eps = dbscan_eps,
...
)
} else if (any(method == "hdbscan")) {
rez <- .cluster_analysis_hdbscan(
cluster_data,
...
)
} else if (any(method %in% c("mixture", "mclust"))) {
rez <- .cluster_analysis_mixture(
cluster_data,
n = n,
...
)
} else {
insight::format_error("Did not find `method` argument. Could be misspecified.")
}
# Assign clusters to observations
# Create NA-vector of same length as original data frame
clusters <- rep(NA, times = nrow(x))
# Create vector with cluster group classification (with missing)
if (include_factors) {
complete_cases <- stats::complete.cases(x)
} else {
complete_cases <- stats::complete.cases(x[vapply(x, is.numeric, TRUE)])
}
clusters[complete_cases] <- rez$clusters
# Get clustering parameters
out <- model_parameters(rez$model, data = cluster_data, clusters = clusters, ...)
performance <- cluster_performance(out)
attr(out, "model") <- rez$model
attr(out, "method") <- method
attr(out, "clusters") <- clusters
attr(out, "data") <- cluster_data
attr(out, "performance") <- performance
class(out) <- c("cluster_analysis", class(out))
out
}
# Clustering Methods --------------------------------------------------------
#' @keywords internal
.cluster_analysis_kmeans <- function(cluster_data, n = 2, kmeans_method = "Hartigan-Wong", iterations = 100, ...) {
model <- stats::kmeans(
cluster_data,
centers = n,
algorithm = kmeans_method,
iter.max = iterations,
...
)
list(model = model, clusters = model$cluster)
}
#' @keywords internal
.cluster_analysis_hkmeans <- function(cluster_data,
n = 2,
kmeans_method = "Hartigan-Wong",
hclust_method = "complete",
iterations = 100,
...) {
insight::check_if_installed("factoextra")
model <- factoextra::hkmeans(cluster_data,
k = n, km.algorithm = kmeans_method,
iter.max = iterations, hc.method = hclust_method, ...
)
list(model = model, clusters = model$cluster)
}
#' @keywords internal
.cluster_analysis_pam <- function(cluster_data = NULL, n = 2, distance_method = "euclidean", ...) {
insight::check_if_installed("cluster")
model <- cluster::pam(cluster_data, k = n, metric = distance_method, ...)
list(model = model, clusters = model$clustering)
}
#' @keywords internal
.cluster_analysis_pamk <- function(cluster_data = NULL, distance_method = "euclidean", pamk_method = "ch", ...) {
insight::check_if_installed("fpc")
model <- fpc::pamk(cluster_data, metric = distance_method, criterion = pamk_method, ...)
list(model = model$pamobject, clusters = model$pamobject$clustering)
}
#' @keywords internal
.cluster_analysis_hclust <- function(cluster_data,
n = 2,
distance_method = "euclidean",
hclust_method = "complete",
iterations = 100,
...) {
if (is.null(n)) {
rez <- n_clusters_hclust(
cluster_data,
preprocess = FALSE,
distance_method = distance_method,
hclust_method = hclust_method,
iterations = iterations,
...
)
out <- list(model = attributes(rez)$model, clusters = rez$Cluster)
} else {
if (distance_method %in% c("correlation", "uncentered", "abscor")) {
insight::format_warning(
paste0(
"Method `",
distance_method,
"` not supported by regular `hclust()`. Please specify another one or set `n = NULL` to use pvclust."
)
)
}
cluster_dist <- stats::dist(cluster_data, method = distance_method, ...)
model <- stats::hclust(cluster_dist, method = hclust_method, ...)
out <- list(model = model, clusters = stats::cutree(model, k = n))
}
out
}
#' @keywords internal
.cluster_analysis_dbscan <- function(cluster_data = NULL,
dbscan_eps = 0.15,
min_size = 0.05,
borderPoints = FALSE,
...) {
insight::check_if_installed("dbscan")
if (min_size < 1) min_size <- round(min_size * nrow(cluster_data))
model <- dbscan::dbscan(cluster_data, eps = dbscan_eps, minPts = min_size, borderPoints = borderPoints, ...)
list(model = model, clusters = model$cluster)
}
#' @keywords internal
.cluster_analysis_hdbscan <- function(cluster_data = NULL, min_size = 0.05, ...) {
insight::check_if_installed("dbscan")
if (min_size < 1) min_size <- round(min_size * nrow(cluster_data))
model <- dbscan::hdbscan(cluster_data, minPts = min_size, ...)
list(model = model, clusters = model$cluster)
}
#' @keywords internal
.cluster_analysis_mixture <- function(cluster_data = NULL, n = NULL, ...) {
insight::check_if_installed("mclust")
model <- mclust::Mclust(cluster_data, G = n, verbose = FALSE, ...)
list(model = model, clusters = model$classification)
}
# Methods ----------------------------------------------------------------
#' @export
#' @inheritParams stats::predict
predict.cluster_analysis <- function(object, newdata = NULL, ...) {
if (is.null(newdata)) {
attributes(object)$clusters
} else {
NextMethod()
}
}
#' @export
print.cluster_analysis <- function(x, ...) {
NextMethod()
cat("\n")
print(attributes(x)$performance)
insight::print_color("\n# You can access the predicted clusters via `predict()`.\n", "yellow")
invisible(x)
}
#' @export
summary.cluster_analysis <- function(object, ...) {
obj_data <- as.data.frame(object)
cols <- names(attributes(object)$data)
obj_data <- obj_data[names(obj_data) %in% c(cols, "Cluster")] # Keep only data
class(obj_data) <- c("cluster_analysis_summary", class(obj_data))
obj_data
}
# Plotting ----------------------------------------------------------------
#' @export
visualisation_recipe.cluster_analysis_summary <- function(x, ...) {
data_long <- datawizard::data_to_long(
x,
select = names(x)[-1], # skip 'Cluster' column
names_to = "Group",
values_to = "Center"
)
layers <- list()
# Layers -----------------------
layers[["l1"]] <- list(
geom = "bar",
data = data_long,
aes = list(x = "Cluster", y = "Center", fill = "Group"),
position = "dodge"
)
layers[["l2"]] <- list(
geom = "hline",
data = data_long,
aes = list(yintercept = 0),
linetype = "dotted"
)
layers[["l3"]] <- list(
geom = "labs",
x = "Cluster Group",
y = "Center",
fill = "Variable",
title = "Cluster Centers"
)
# Out
class(layers) <- c("visualisation_recipe", "see_visualisation_recipe", class(layers))
attr(layers, "data") <- data_long
layers
}
#' @export
visualisation_recipe.cluster_analysis <- function(x, show_data = "text", ...) {
ori_data <- stats::na.omit(attributes(x)$data)
# Check number of columns: if more than 2, display PCs, if less, fail
if (ncol(ori_data) <= 2) {
insight::format_error("Less than 2 variables in the dataset. Cannot compute enough principal components to represent clustering.") # nolint
}
# Get 2 PCA Components
pca <- principal_components(ori_data, n = 2)
prediction_data <- stats::predict(pca)
names(prediction_data) <- c("x", "y")
prediction_data$Cluster <- as.character(stats::na.omit(attributes(x)$clusters))
prediction_data$label <- row.names(ori_data)
if (!is.null(show_data) && show_data %in% c("label", "text")) {
label <- "label"
} else {
label <- NULL
}
# Centers data (also on the PCA scale)
data_centers <- stats::predict(pca, newdata = as.data.frame(x)[names(ori_data)], names = c("x", "y"))
data_centers$Cluster <- as.character(as.data.frame(x)$Cluster)
# Outliers
prediction_data$Cluster[prediction_data$Cluster == "0"] <- NA
data_centers <- data_centers[data_centers$Cluster != "0", ]
layers <- list()
# Layers -----------------------
layers[["l1"]] <- list(
geom = show_data,
data = prediction_data,
aes = list(x = "x", y = "y", label = label, color = "Cluster")
)
layers[["l2"]] <- list(
geom = "point",
data = data_centers,
aes = list(x = "x", y = "y", color = "Cluster"),
shape = "+", size = 10
)
layers[["l3"]] <- list(
geom = "labs",
x = "PCA - 1",
y = "PCA - 2",
title = "Clustering Solution"
)
# Out
class(layers) <- c("visualisation_recipe", "see_visualisation_recipe", class(layers))
attr(layers, "data") <- prediction_data
layers
}
#' @export
plot.cluster_analysis <- function(x, ...) {
plot(visualisation_recipe(x, ...))
}
|