1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
#' @title Compare model parameters of multiple models
#' @name compare_parameters
#'
#' @description Compute and extract model parameters of multiple regression
#' models. See [`model_parameters()`] for further details.
#'
#' @param ... One or more regression model objects, or objects returned by
#' `model_parameters()`. Regression models may be of different model
#' types. Model objects may be passed comma separated, or as a list.
#' If model objects are passed with names or the list has named elements,
#' these names will be used as column names.
#' @param component Model component for which parameters should be shown. See
#' documentation for related model class in [`model_parameters()`].
#' @param column_names Character vector with strings that should be used as
#' column headers. Must be of same length as number of models in `...`.
#' @param ci_method Method for computing degrees of freedom for p-values
#' and confidence intervals (CI). See documentation for related model class
#' in [model_parameters()].
#' @param coefficient_names Character vector with strings that should be used
#' as column headers for the coefficient column. Must be of same length as
#' number of models in `...`, or length 1. If length 1, this name will be
#' used for all coefficient columns. If `NULL`, the name for the coefficient
#' column will detected automatically (as in `model_parameters()`).
#' @inheritParams model_parameters.default
#' @inheritParams model_parameters.glmmTMB
#' @inheritParams print.parameters_model
#'
#' @details
#'
#' This function is in an early stage and does not yet cope with more complex
#' models, and probably does not yet properly render all model components. It
#' should also be noted that when including models with interaction terms, not
#' only do the values of the parameters change, but so does their meaning (from
#' main effects, to simple slopes), thereby making such comparisons hard.
#' Therefore, you should not use this function to compare models with
#' interaction terms with models without interaction terms.
#'
#' @return A data frame of indices related to the model's parameters.
#'
#' @examplesIf require("gt", quietly = TRUE)
#' data(iris)
#' lm1 <- lm(Sepal.Length ~ Species, data = iris)
#' lm2 <- lm(Sepal.Length ~ Species + Petal.Length, data = iris)
#' compare_parameters(lm1, lm2)
#'
#' # custom style
#' compare_parameters(lm1, lm2, select = "{estimate}{stars} ({se})")
#'
#' \donttest{
#' # custom style, in HTML
#' result <- compare_parameters(lm1, lm2, select = "{estimate}<br>({se})|{p}")
#' print_html(result)
#' }
#'
#' data(mtcars)
#' m1 <- lm(mpg ~ wt, data = mtcars)
#' m2 <- glm(vs ~ wt + cyl, data = mtcars, family = "binomial")
#' compare_parameters(m1, m2)
#' \donttest{
#' # exponentiate coefficients, but not for lm
#' compare_parameters(m1, m2, exponentiate = "nongaussian")
#'
#' # change column names
#' compare_parameters("linear model" = m1, "logistic reg." = m2)
#' compare_parameters(m1, m2, column_names = c("linear model", "logistic reg."))
#'
#' # or as list
#' compare_parameters(list(m1, m2))
#' compare_parameters(list("linear model" = m1, "logistic reg." = m2))
#' }
#' @export
compare_parameters <- function(...,
ci = 0.95,
effects = "fixed",
component = "conditional",
standardize = NULL,
exponentiate = FALSE,
ci_method = "wald",
p_adjust = NULL,
select = NULL,
column_names = NULL,
pretty_names = TRUE,
coefficient_names = NULL,
keep = NULL,
drop = NULL,
include_reference = FALSE,
groups = NULL,
verbose = TRUE) {
models <- list(...)
if (length(models) == 1) {
if (insight::is_model(models[[1]]) || inherits(models[[1]], "parameters_model")) {
modellist <- FALSE
} else {
models <- models[[1]]
modellist <- TRUE
}
} else {
modellist <- FALSE
}
if (isTRUE(modellist)) {
model_names <- names(models)
if (length(model_names) == 0) {
model_names <- paste("Model", seq_along(models), sep = " ")
names(models) <- model_names
}
} else {
model_names <- match.call(expand.dots = FALSE)[["..."]]
if (length(names(model_names)) > 0) {
model_names <- names(model_names)
} else if (any(vapply(model_names, is.call, TRUE))) {
model_names <- paste("Model", seq_along(models), sep = " ")
} else {
model_names <- vapply(model_names, as.character, character(1))
names(models) <- model_names
}
}
supported_models <- vapply(models, function(i) {
insight::is_model_supported(i) || inherits(i, "lavaan") || inherits(i, "parameters_model")
}, TRUE)
if (!all(supported_models)) {
if (verbose) {
insight::format_alert(
sprintf("Following objects are not supported: %s", toString(model_names[!supported_models])),
"Dropping unsupported models now."
)
}
models <- models[supported_models]
model_names <- model_names[supported_models]
}
# set default
if (is.null(select)) {
if (is.null(ci) || is.na(ci)) {
# if user set CI to NULL, show only estimates by default
select <- "{estimate}"
} else {
# if we have CI, include them
select <- "ci"
}
}
# provide own names
if (!is.null(column_names)) {
if (length(column_names) != length(model_names)) {
if (isTRUE(verbose)) {
insight::format_alert("Number of column names does not match number of models.")
}
} else {
model_names <- column_names
}
}
# make sure we have enough coefficient names - else, repeat first value
if (!is.null(coefficient_names) && length(coefficient_names) < length(models)) {
coefficient_names <- rep(coefficient_names[1], length(models))
}
# iterate all models and create list of model parameters
m <- lapply(seq_along(models), function(i) {
model <- models[[i]]
model_name <- model_names[[i]]
if (inherits(model, "parameters_model")) {
# we already have model parameters object...
dat <- model
} else {
# set default-ci_type for Bayesian models
if (.is_bayesian_model(model, exclude = c("bmerMod", "bayesx", "blmerMod", "bglmerMod")) && !ci_method %in% c("hdi", "quantile", "ci", "eti", "si", "bci", "bcai")) { # nolint
ci_method_tmp <- "eti"
} else {
ci_method_tmp <- ci_method
}
# here we have a model object that needs to be passed to model_parameters
dat <- model_parameters(
model,
ci = ci,
effects = effects,
component = component,
standardize = standardize,
exponentiate = exponentiate,
ci_method = ci_method_tmp,
p_adjust = p_adjust,
keep = keep,
drop = drop,
wb_component = FALSE,
include_reference = include_reference,
verbose = verbose
)
}
# set specific names for coefficient column
coef_name <- attributes(dat)$coefficient_name
if (!is.null(coef_name) && is.null(coefficient_names)) {
colnames(dat)[colnames(dat) == "Coefficient"] <- coef_name
} else if (!is.null(coefficient_names)) {
colnames(dat)[colnames(dat) == "Coefficient"] <- coefficient_names[i]
}
# set pretty parameter names
dat <- .set_pretty_names(dat, pretty_names)
# make sure we have a component- and effects column, for merging
if (!"Component" %in% colnames(dat)) {
dat$Component <- "conditional"
}
if (!"Effects" %in% colnames(dat)) {
dat$Effects <- "fixed"
}
if (!"Group" %in% colnames(dat)) {
dat$Group <- ""
}
# add zi-suffix to parameter names
if (any(dat$Component == "zero_inflated")) {
dat$Parameter[dat$Component == "zero_inflated"] <- paste0(dat$Parameter[dat$Component == "zero_inflated"], " (zi)")
}
# add suffix
ignore <- colnames(dat) %in% c("Parameter", "Component", "Effects", "Group")
colnames(dat)[!ignore] <- paste0(colnames(dat)[!ignore], ".", model_name)
# save model number, for sorting
dat$model <- i
dat$model[.in_intercepts(dat$Parameter)] <- 0
dat
})
object_attributes <- lapply(m, attributes)
names(object_attributes) <- model_names
# merge all data frames
all_models <- suppressWarnings(Reduce(function(x, y) {
merge(x, y, all = TRUE, sort = FALSE, by = c("Parameter", "Component", "Effects", "Group"))
}, m))
# find columns with model numbers and create new variable "params_order",
# which is pasted together of all model-column indices. Take lowest index of
# all model-column indices, which then indicates order of parameters/rows.
model_cols <- which(startsWith(colnames(all_models), "model"))
params_order <- as.numeric(substr(gsub("NA", "", do.call(paste0, all_models[model_cols]), fixed = TRUE), 0, 1))
all_models <- all_models[order(params_order), ]
all_models[model_cols] <- NULL
# remove empty group-column
if (!any(nzchar(as.character(all_models$Group), keepNA = TRUE))) {
all_models$Group <- NULL
}
attr(all_models, "model_names") <- gsub("\"", "", unlist(lapply(model_names, insight::safe_deparse)), fixed = TRUE)
attr(all_models, "output_style") <- select
attr(all_models, "all_attributes") <- object_attributes
attr(all_models, "parameter_groups") <- groups
class(all_models) <- c("compare_parameters", "see_compare_parameters", unique(class(all_models)))
all_models
}
#' @rdname compare_parameters
#' @export
compare_models <- compare_parameters
# helper ----------------------------
.set_pretty_names <- function(x, pretty_names) {
# check if pretty names should be replaced by value labels
# (if we have labelled data)
if (isTRUE(getOption("parameters_labels", FALSE)) || identical(pretty_names, "labels")) {
attr(x, "pretty_names") <- attr(x, "pretty_labels", exact = TRUE)
pretty_names <- TRUE
}
att <- attributes(x)
if (!is.null(att$pretty_names)) {
# remove strings with NA names
att$pretty_names <- att$pretty_names[!is.na(names(att$pretty_names))]
if (length(att$pretty_names) != length(x$Parameter)) {
match_pretty_names <- match(names(att$pretty_names), x$Parameter)
match_pretty_names <- match_pretty_names[!is.na(match_pretty_names)]
if (length(match_pretty_names)) {
x$Parameter[match_pretty_names] <- att$pretty_names[x$Parameter[match_pretty_names]]
}
} else {
match_pretty_names <- att$pretty_names[x$Parameter]
if (anyNA(match_pretty_names)) {
match_pretty_names <- match(names(att$pretty_names), x$Parameter)
match_pretty_names <- match_pretty_names[!is.na(match_pretty_names)]
if (length(match_pretty_names)) {
x$Parameter[match_pretty_names] <- att$pretty_names[x$Parameter[match_pretty_names]]
}
} else {
x$Parameter <- att$pretty_names[x$Parameter]
}
}
}
x
}
.is_bayesian_model <- function(x, exclude = NULL) {
bayes_classes <- c(
"brmsfit", "stanfit", "MCMCglmm", "stanreg",
"stanmvreg", "bmerMod", "BFBayesFactor", "bamlss",
"bayesx", "mcmc", "bcplm", "bayesQR", "BGGM",
"meta_random", "meta_fixed", "meta_bma", "blavaan",
"blrm", "blmerMod"
)
# if exclude is not NULL, remove elements in exclude from bayes_class
if (!is.null(exclude)) {
bayes_classes <- bayes_classes[!bayes_classes %in% exclude]
}
inherits(x, bayes_classes)
}
|