1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
|
#' @title Dominance Analysis
#' @name dominance_analysis
#' @inheritParams domir::domin
#'
#' @description Computes Dominance Analysis Statistics and Designations
#'
#' @param model A model object supported by `performance::r2()`. See 'Details'.
#'
#' @param sets A (named) list of formula objects with no left hand
#' side/response. If the list has names, the name provided each element
#' will be used as the label for the set. Unnamed list elements will be
#' provided a set number name based on its position among the sets as entered.
#'
#' Predictors in each formula are bound together as a set in the dominance
#' analysis and dominance statistics and designations are computed for
#' the predictors together. Predictors in `sets` must be present in the model
#' submitted to the `model` argument and cannot be in the `all` argument.
#'
#' @param all A formula with no left hand side/response.
#'
#' Predictors in the formula are included in each subset in the dominance
#' analysis and the R2 value associated with them is subtracted from the
#' overall value. Predictors in `all` must be present in the model
#' submitted to the `model` argument and cannot be in the `sets` argument.
#'
#' @param quote_args A character vector of arguments in the model submitted to
#' `model` to `quote()` prior to submitting to the dominance analysis. This
#' is necessary for data masked arguments (e.g., `weights`) to prevent them
#' from being evaluated before being applied to the model and causing an error.
#'
#' @param contrasts A named list of [`contrasts`] used by the model object.
#' This list is required in order for the correct mapping of parameters to
#' predictors in the output when the model creates indicator codes for factor
#' variables using [`insight::get_modelmatrix()`]. By default, the `contrast`
#' element from the model object submitted is used. If the model object does
#' not have a `contrast` element the user can supply this named list.
#'
#' @param ... Not used at current.
#'
#' @return Object of class `"parameters_da"`.
#'
#' An object of class `"parameters_da"` is a list of `data.frame`s composed
#' of the following elements:
#' \describe{
#' \item{`General`}{A `data.frame` which associates dominance statistics with
#' model parameters. The variables in this `data.frame` include:
#' \describe{
#' \item{`Parameter`}{Parameter names.}
#' \item{`General_Dominance`}{Vector of general dominance statistics.
#' The R2 ascribed to variables in the `all` argument are also reported
#' here though they are not general dominance statistics.}
#' \item{`Percent`}{Vector of general dominance statistics normalized
#' to sum to 1.}
#' \item{`Ranks`}{Vector of ranks applied to the general dominance
#' statistics.}
#' \item{`Subset`}{Names of the subset to which the parameter belongs in
#' the dominance analysis. Each other `data.frame` returned will refer
#' to these subset names.}}}
#' \item{`Conditional`}{A `data.frame` of conditional dominance
#' statistics. Each observation represents a subset and each variable
#' represents an the average increment to R2 with a specific number of
#' subsets in the model. `NULL` if `conditional` argument is `FALSE`.}
#' \item{`Complete`}{A `data.frame` of complete dominance
#' designations. The subsets in the observations are compared to the
#' subsets referenced in each variable. Whether the subset
#' in each variable dominates the subset in each observation is
#' represented in the logical value. `NULL` if `complete`
#' argument is `FALSE`.}
#' }
#'
#' @details Computes two decompositions of the model's R2 and returns
#' a matrix of designations from which predictor relative importance
#' determinations can be obtained.
#'
#' Note in the output that the "constant" subset is associated with a
#' component of the model that does not directly contribute to the R2 such
#' as an intercept. The "all" subset is apportioned a component of the fit
#' statistic but is not considered a part of the dominance analysis and
#' therefore does not receive a rank, conditional dominance statistics, or
#' complete dominance designations.
#'
#' The input model is parsed using `insight::find_predictors()`, does not
#' yet support interactions, transformations, or offsets applied in the R
#' formula, and will fail with an error if any such terms are detected.
#'
#' The model submitted must accept an formula object as a `formula`
#' argument. In addition, the model object must accept the data on which
#' the model is estimated as a `data` argument. Formulas submitted
#' using object references (i.e., `lm(mtcars$mpg ~ mtcars$vs)`) and
#' functions that accept data as a non-`data` argument
#' (e.g., `survey::svyglm()` uses `design`) will fail with an error.
#'
#' Models that return `TRUE` for the `insight::model_info()`
#' function's values "is_bayesian", "is_mixed", "is_gam",
#' is_multivariate", "is_zero_inflated",
#' or "is_hurdle" are not supported at current.
#'
#' When `performance::r2()` returns multiple values, only the first is used
#' by default.
#'
#' @references
#' - Azen, R., & Budescu, D. V. (2003). The dominance analysis approach
#' for comparing predictors in multiple regression. Psychological Methods,
#' 8(2), 129-148. doi:10.1037/1082-989X.8.2.129
#'
#' - Budescu, D. V. (1993). Dominance analysis: A new approach to the
#' problem of relative importance of predictors in multiple regression.
#' Psychological Bulletin, 114(3), 542-551. doi:10.1037/0033-2909.114.3.542
#'
#' - Groemping, U. (2007). Estimators of relative importance in linear
#' regression based on variance decomposition. The American Statistician,
#' 61(2), 139-147. doi:10.1198/000313007X188252
#'
#' @seealso [domir::domin()]
#'
#' @author Joseph Luchman
#'
#' @examplesIf require("domir") && require("performance")
#' data(mtcars)
#'
#' # Dominance Analysis with Logit Regression
#' model <- glm(vs ~ cyl + carb + mpg, data = mtcars, family = binomial())
#'
#' performance::r2(model)
#' dominance_analysis(model)
#'
#' # Dominance Analysis with Weighted Logit Regression
#' model_wt <- glm(vs ~ cyl + carb + mpg,
#' data = mtcars,
#' weights = wt, family = quasibinomial()
#' )
#'
#' dominance_analysis(model_wt, quote_args = "weights")
#' @export
dominance_analysis <- function(model, sets = NULL, all = NULL,
conditional = TRUE, complete = TRUE,
quote_args = NULL, contrasts = model$contrasts,
...) {
# Exit Conditions ----
insight::check_if_installed("domir")
insight::check_if_installed("performance")
if (!insight::is_regression_model(model)) {
insight::format_error(
paste(deparse(substitute(model)), "is not a supported {.pkg insight} model."),
"You may be able to dominance analyze this model using the {.pkg domir} package."
)
}
if (!any(utils::.S3methods("r2", class = class(model)[[1]], envir = getNamespace("performance")) %in%
paste0("r2.", class(model)))) {
insight::format_error(
paste(deparse(substitute(model)), "does not have a {.pkg perfomance}-supported `r2()` method."),
"You may be able to dominance analyze this model using the {.pkg domir} package."
)
}
model_info <- insight::model_info(model)
if (any(unlist(model_info[c("is_bayesian", "is_mixed", "is_gam", "is_multivariate", "is_zero_inflated", "is_hurdle")]))) {
insight::format_error(
paste0("`dominance_analysis()` does not yet support models of class `", class(model)[[1]], "`."),
"You may be able to dominance analyze this model using the {.pkg domir} package."
)
}
if (length(insight::find_predictors(model, flatten = TRUE)) < 2) {
insight::format_error("Too few predictors for a dominance analysis.")
}
if (!is.null(insight::find_offset(model))) {
insight::format_error(
"Offsets in the model are not allowed in this version of `dominance_analysis()`.",
"Try using package {.pkg domir}."
)
}
if (!all(insight::find_predictors(model, flatten = TRUE) %in% insight::find_terms(model)$conditional)) {
insight::format_error(
"Predictors do not match terms.",
"This usually occurs when there are in-formula predictor transformations such as `log(x)` or `I(x+z)`.",
"`dominance_analysis()` cannot yet accommodate such terms. Reformat your model to ensure all parameters",
"match predictors in the data or use the {.pkg domir} package."
)
}
if (!is.null(insight::find_interactions(model))) {
insight::format_error("Interactions in the model formula are not allowed.")
}
if (!is.null(sets)) {
if (!is.list(sets)) {
insight::format_error("`sets` argument must be submitted as list.")
}
if (length(sets) != length(unlist(sets))) {
insight::format_error("Nested lists are not allowed in `sets`.")
}
if (!all(sapply(sets, inherits, "formula"))) {
insight::format_error("Each element of list in `sets` must be a formula.")
}
if (any(sapply(sets, function(x) attr(stats::terms(x), "response") == 1))) {
insight::format_error("Formulas in `sets` argument must not have responses/left hand sides.")
}
}
if (!is.null(all)) {
if (!inherits(all, "formula")) {
insight::format_error("`all` argument must be submitted as a formula.")
}
if (attr(stats::terms(all), "response") == 1) {
insight::format_error("Formula in `all` argument must not have a response/left hand side.")
}
}
if (!is.null(quote_args) && !all(is.character(quote_args))) {
insight::format_error("All arguments in `quote_args` must be characters.")
}
# Collect components for arguments ----
ivs <- insight::find_predictors(model, flatten = TRUE)
dv <- insight::find_response(model)
# reg <- insight::model_name(model) # insight::get_call + as.list() and take first element? glm.nb doesn't work...
reg <- as.list(insight::get_call(model))[[1]]
# Process sets ----
if (!is.null(sets)) {
# gather predictors from each set
sets_processed <- lapply(sets, function(x) attr(stats::terms(x), "term.labels"))
# remove predictors from `ivs` list if in sets
set_remove_loc <- unlist(lapply(sets_processed, function(x) which(ivs %in% x)))
if (length(set_remove_loc) != length(unlist(sets_processed))) {
wrong_set_terms <- unlist(sets_processed)[which(!(unlist(sets_processed) %in% ivs))]
insight::format_error(
"Terms",
paste(wrong_set_terms, sep = " "),
"in `sets` argument do not match any predictors in model."
)
}
ivs <- ivs[-set_remove_loc]
# apply names to sets
set_names <- names(sets)
missing_set_names <- which(set_names == "")
if (length(missing_set_names) > 0) {
set_names[missing_set_names] <- paste0("set", missing_set_names)
}
if (any(set_names %in% c("all", "constant"))) {
insight::format_error(
"Names \"all\" and \"constant\" are reserved for subset names in the `dominance_analysis()` function.",
"Please rename any sets currently named \"all\" or \"constant\"."
)
}
if (any(set_names %in% ivs)) {
repeat_names <- set_names[which(set_names %in% ivs)]
insight::format_error(
"Set names",
paste(repeat_names, sep = " "), "are also the names of invidiual predictors.",
"Please rename these sets."
)
}
} else {
sets_processed <- NULL
}
# Process all ----
if (!is.null(all)) {
# gather predictors in all
all_processed <- attr(stats::terms(all), "term.labels")
# remove predictors in all from `ivs` list
all_remove_loc <- which(ivs %in% all_processed)
if (any(all_processed %in% unlist(sets_processed))) {
reused_terms <-
all_processed[which(all_processed %in% unlist(sets_processed))]
insight::format_error(
"Terms",
paste(reused_terms, sep = " "),
"in all argument are also used in `sets` argument."
)
}
if (length(all_remove_loc) != length(unlist(all_processed))) {
wrong_all_terms <- all_processed[which(!(all_processed) %in% ivs)]
insight::format_error(
"Terms",
paste(wrong_all_terms, sep = " "),
"in `all` argument do not match any predictors in model."
)
}
ivs <- ivs[-all_remove_loc] # update IVs
} else {
all_processed <- NULL
}
# name collisions across subsets - exit
if (any(ivs %in% c("all", "constant"))) {
insight::format_error(
"Names 'all' and 'constant' are reserved for subset names in the `dominance_analysis()` function.",
"Please rename any predictors currently named 'all' or 'constant.'",
"Alternatively, put the predictor in a set by itself."
)
}
# big DA warning
if (length(c(ivs, unlist(sets_processed))) > 15) {
insight::format_warning(
paste0("Total of ", 2^length(ivs) - 1, " models to be estimated."),
"Process may take some time."
)
}
# Build non-formula model arguments to `domin` ----
if (length(ivs) == 0) ivs <- "1"
fml <- stats::reformulate(ivs, response = dv, intercept = insight::has_intercept(model))
data <- insight::get_data(model, verbose = FALSE)
args <- as.list(insight::get_call(model), collapse = "") # extract all arguments from call
loc <- which(!(names(args) %in% c("formula", "data"))) # find formula and data arguments
if (length(which(names(args) %in% c("formula", "data"))) != 2) {
# exit if formula and data arguments missing
insight::format_error("Model submitted does not have a formula and `data` argument.")
}
args <- args[loc] # remove formula and data arguments
args <- args[-1] # remove function name
# quote arguments for domin
for (arg in quote_args) {
if (arg %in% names(args)) {
args[[arg]] <- str2lang(paste0("quote(", deparse(args[[arg]]), ")", collapse = ""))
} else {
insight::format_error(arg, " in `quote_args` not among arguments in model.")
}
}
# Internal wrapper to ensure r2 values conform to domin ----
.r2_wrap <- function(model, ...) {
list(fitstat = performance::r2(model, ...)[[1]])
}
# Finalize and implement DA
args2domin <- append(list(
formula_overall = fml, reg = reg, fitstat = list(.r2_wrap, "fitstat"),
data = data, conditional = conditional, complete = complete,
sets = sets_processed, all = all_processed
), args)
utils::capture.output({
domir_res <- do.call(domir::domin, args2domin)
})
# Set up returned data.frames ----
# Apply set names to domin results
if (!is.null(sets)) {
names(domir_res$General_Dominance) <-
c(
names(domir_res$General_Dominance)[1:(length(domir_res$General_Dominance) - length(set_names))],
set_names
)
if (conditional) {
rownames(domir_res$Conditional_Dominance) <-
names(domir_res$General_Dominance)
}
}
if (complete) {
colnames(domir_res$Complete_Dominance) <-
paste0("dmn_", names(domir_res$General_Dominance))
dimnames(domir_res$Complete_Dominance) <- list(
colnames(domir_res$Complete_Dominance),
names(domir_res$General_Dominance)
)
domir_res$Complete_Dominance <- t(domir_res$Complete_Dominance)
}
# Map parameter names to subsets - structure set-up
da_df_res <-
da_df_cat <-
.data_frame(parameter = insight::find_parameters(model, flatten = TRUE))
da_df_cat <- .data_frame(da_df_cat, subset = NA_character_)
# if parameter is same as domin name, copy it to 'subset'
da_df_cat$subset <-
ifelse((da_df_res$parameter %in%
names(domir_res$General_Dominance)) &
(is.na(da_df_cat$subset)),
da_df_res$parameter,
da_df_cat$subset
)
# Expand contrast names
if (!is.null(contrasts)) {
contr_names <-
lapply(
names(contrasts),
function(name) {
pred_loc <- which(insight::find_predictors(model, flatten = TRUE) == name)
pred_names <-
colnames(insight::get_modelmatrix(model))[
which(attr(insight::get_modelmatrix(model), "assign") == pred_loc)
]
}
)
names(contr_names) <- names(contrasts)
contr_map <- rep(names(contr_names), lengths(contr_names))
names(contr_map) <- unlist(contr_names)
for (subset in which(is.na(da_df_cat$subset))) {
if ((da_df_res$parameter[[subset]] %in% names(contr_map))) {
da_df_cat$subset[[subset]] <-
contr_map[[which(names(contr_map) == da_df_res$parameter[[subset]])]]
}
}
}
# Apply set names
if (!is.null(sets)) {
for (set in seq_along(sets)) {
set_name <- if (!is.null(names(sets)[[set]])) {
names(sets)[[set]]
} else {
paste0("set", set)
}
da_df_cat$subset <-
replace(
da_df_cat$subset,
da_df_res$parameter %in% all.vars(sets[[set]]), set_name
)
da_df_cat$subset <-
replace(
da_df_cat$subset,
da_df_cat$subset %in% all.vars(sets[[set]]), set_name
)
}
}
# Apply 'all' names
if (!is.null(all)) {
da_df_cat$subset <-
replace(
da_df_cat$subset,
da_df_res$parameter %in% all.vars(all), "all"
)
da_df_cat$subset <-
replace(
da_df_cat$subset,
da_df_cat$subset %in% all.vars(all), "all"
)
}
# assume remaining parameters are part of 'constant'
da_df_cat$subset <-
replace(
da_df_cat$subset,
is.na(da_df_cat$subset), "constant"
)
# merge subsets and DA results to parameter names
da_df_res <-
datawizard::data_merge(
da_df_cat,
.data_frame(
subset = names(domir_res$General_Dominance),
general_dominance = domir_res$General_Dominance
)
)
# plug in value of 'all' in 'all' subsets/parameters
if (!is.null(all)) {
da_df_res$general_dominance <-
replace(
da_df_res$general_dominance,
da_df_res$subset == "all",
domir_res$Fit_Statistic_All_Subsets
)
}
# merge standardized general dominance stat values
da_df_res <-
datawizard::data_merge(
da_df_res,
.data_frame(
subset = names(domir_res$General_Dominance),
standardized = domir_res$Standardized
)
)
# merge ranks based on general dominance stat values
da_df_res <-
datawizard::data_merge(
da_df_res,
.data_frame(
subset = names(domir_res$General_Dominance),
ranks = domir_res$Ranks
)
)
da_df_res <-
datawizard::data_relocate(da_df_res, "subset", after = "ranks")
if (conditional) {
da_df_cdl <- .data_frame(Subset = names(domir_res$General_Dominance))
da_df_cdl <- datawizard::data_merge(
da_df_cdl,
.data_frame(
Subset = names(domir_res$General_Dominance),
domir_res$Conditional_Dominance
)
)
cols_to_select <- colnames(da_df_cdl)[2:length(da_df_cdl)]
da_df_cdl <- datawizard::data_rename(
da_df_cdl,
select = cols_to_select,
replacement = colnames(domir_res$Conditional_Dominance)
)
} else {
da_df_cdl <- NULL
}
if (complete) {
da_df_cpt <- .data_frame(Subset = names(domir_res$General_Dominance))
da_df_cpt <- datawizard::data_merge(
da_df_cpt,
.data_frame(
Subset = names(domir_res$General_Dominance),
domir_res$Complete_Dominance
)
)
cols_to_select <- colnames(da_df_cpt)[2:length(da_df_cpt)]
da_df_cpt <- datawizard::data_rename(
da_df_cpt,
select = cols_to_select,
replacement = colnames(domir_res$Complete_Dominance)
)
} else {
da_df_cpt <- NULL
}
da_df_res <- datawizard::data_rename(
da_df_res,
replacement = c(
"Parameter", "General_Dominance",
"Percent", "Ranks", "Subset"
)
)
da_list <- list(
General = da_df_res,
Conditional = da_df_cdl,
Complete = da_df_cpt
)
# add attributes and class
attr(da_list, "model_R2") <- domir_res$Fit_Statistic_Overall
attr(da_list$General, "table_title") <- "General Dominance Statistics"
if (conditional) attr(da_list$Conditional, "table_title") <- "Conditional Dominance Statistics"
if (complete) attr(da_list$Complete, "table_title") <- "Complete Dominance Designations"
class(da_list) <- "parameters_da"
da_list
}
# methods ------------------------------
#' @export
print.parameters_da <- function(x, digits = 3, ...) {
insight::print_color("# Dominance Analysis Results", "blue")
cat("\n\n")
cat("Model R2 Value: ", sprintf("%.*f", digits, attr(x, "model_R2")), "\n\n")
printed_x <- x
printed_x$General <- datawizard::data_rename(x$General,
select = "General_Dominance",
replacement = "General Dominance"
)
if (!is.null(x$Conditional)) {
cdl_col <- ncol(x$Conditional)
cdl_names <- paste0("IVs_", 1:(cdl_col - 1))
cdl_names_rep <- paste("IVs:", 1:(cdl_col - 1))
printed_x$Conditional <-
datawizard::data_rename(x$Conditional,
select = cdl_names,
replacement = cdl_names_rep
)
}
if (!is.null(x$Complete)) {
cpt_names <- names(x$Complete)[-1]
cpt_names_rep <- gsub(
"dmn_", "< ",
cpt_names,
fixed = TRUE
)
printed_x$Complete <-
datawizard::data_rename(x$Complete,
select = cpt_names,
replacement = cpt_names_rep
)
}
cat(insight::export_table(printed_x, digits = digits, ...))
invisible(x)
}
|