1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
|
#' @importFrom bayestestR equivalence_test
#' @export
bayestestR::equivalence_test
#' @title Equivalence test
#'
#' @description Compute the (conditional) equivalence test for frequentist models.
#'
#' @param x A statistical model.
#' @param range The range of practical equivalence of an effect. May be
#' `"default"`, to automatically define this range based on properties of the
#' model's data.
#' @param ci Confidence Interval (CI) level. Default to `0.95` (`95%`).
#' @param rule Character, indicating the rules when testing for practical
#' equivalence. Can be `"bayes"`, `"classic"` or `"cet"`. See 'Details'.
#' @param test Hypothesis test for computing contrasts or pairwise comparisons.
#' See [`?ggeffects::test_predictions`](https://strengejacke.github.io/ggeffects/reference/test_predictions.html)
#' for details.
#' @param verbose Toggle warnings and messages.
#' @param ... Arguments passed to or from other methods.
#' @inheritParams model_parameters.glmmTMB
#' @inheritParams p_value
#'
#' @seealso For more details, see [bayestestR::equivalence_test()]. Further
#' readings can be found in the references. See also [`p_significance()`] for
#' a unidirectional equivalence test.
#'
#' @details In classical null hypothesis significance testing (NHST) within a
#' frequentist framework, it is not possible to accept the null hypothesis, H0 -
#' unlike in Bayesian statistics, where such probability statements are
#' possible. "[...] one can only reject the null hypothesis if the test
#' statistics falls into the critical region(s), or fail to reject this
#' hypothesis. In the latter case, all we can say is that no significant effect
#' was observed, but one cannot conclude that the null hypothesis is true."
#' (_Pernet 2017_). One way to address this issues without Bayesian methods is
#' *Equivalence Testing*, as implemented in `equivalence_test()`. While you
#' either can reject the null hypothesis or claim an inconclusive result in
#' NHST, the equivalence test - according to _Pernet_ - adds a third category,
#' *"accept"*. Roughly speaking, the idea behind equivalence testing in a
#' frequentist framework is to check whether an estimate and its uncertainty
#' (i.e. confidence interval) falls within a region of "practical equivalence".
#' Depending on the rule for this test (see below), statistical significance
#' does not necessarily indicate whether the null hypothesis can be rejected or
#' not, i.e. the classical interpretation of the p-value may differ from the
#' results returned from the equivalence test.
#'
#' ## Calculation of equivalence testing
#' - "bayes" - Bayesian rule (Kruschke 2018)
#'
#' This rule follows the "HDI+ROPE decision rule" (_Kruschke, 2014, 2018_) used
#' for the [`Bayesian counterpart()`][bayestestR::equivalence_test]. This
#' means, if the confidence intervals are completely outside the ROPE, the
#' "null hypothesis" for this parameter is "rejected". If the ROPE
#' completely covers the CI, the null hypothesis is accepted. Else, it's
#' undecided whether to accept or reject the null hypothesis. Desirable
#' results are low proportions inside the ROPE (the closer to zero the
#' better).
#'
#' - "classic" - The TOST rule (Lakens 2017)
#'
#' This rule follows the "TOST rule", i.e. a two one-sided test procedure
#' (_Lakens 2017_). Following this rule...
#' - practical equivalence is assumed (i.e. H0 *"accepted"*) when the narrow
#' confidence intervals are completely inside the ROPE, no matter if the
#' effect is statistically significant or not;
#' - practical equivalence (i.e. H0) is *rejected*, when the coefficient is
#' statistically significant, both when the narrow confidence intervals
#' (i.e. `1-2*alpha`) include or exclude the the ROPE boundaries, but the
#' narrow confidence intervals are *not fully covered* by the ROPE;
#' - else the decision whether to accept or reject practical equivalence is
#' undecided (i.e. when effects are *not* statistically significant *and*
#' the narrow confidence intervals overlaps the ROPE).
#'
#' - "cet" - Conditional Equivalence Testing (Campbell/Gustafson 2018)
#'
#' The Conditional Equivalence Testing as described by _Campbell and
#' Gustafson 2018_. According to this rule, practical equivalence is
#' rejected when the coefficient is statistically significant. When the
#' effect is *not* significant and the narrow confidence intervals are
#' completely inside the ROPE, we accept (i.e. assume) practical equivalence,
#' else it is undecided.
#'
#' ## Levels of Confidence Intervals used for Equivalence Testing
#' For `rule = "classic"`, "narrow" confidence intervals are used for
#' equivalence testing. "Narrow" means, the the intervals is not 1 - alpha,
#' but 1 - 2 * alpha. Thus, if `ci = .95`, alpha is assumed to be 0.05
#' and internally a ci-level of 0.90 is used. `rule = "cet"` uses
#' both regular and narrow confidence intervals, while `rule = "bayes"`
#' only uses the regular intervals.
#'
#' ## p-Values
#' The equivalence p-value is the area of the (cumulative) confidence
#' distribution that is outside of the region of equivalence. It can be
#' interpreted as p-value for *rejecting* the alternative hypothesis and
#' *accepting* the "null hypothesis" (i.e. assuming practical equivalence). That
#' is, a high p-value means we reject the assumption of practical equivalence
#' and accept the alternative hypothesis.
#'
#' ## Second Generation p-Value (SGPV)
#' Second generation p-values (SGPV) were proposed as a statistic that
#' represents _the proportion of data-supported hypotheses that are also null
#' hypotheses_ _(Blume et al. 2018, Lakens and Delacre 2020)_. It represents the
#' proportion of the _full_ confidence interval range (assuming a normally or
#' t-distributed, equal-tailed interval, based on the model) that is inside the
#' ROPE. The SGPV ranges from zero to one. Higher values indicate that the
#' effect is more likely to be practically equivalent ("not of interest").
#'
#' Note that the assumed interval, which is used to calculate the SGPV, is an
#' estimation of the _full interval_ based on the chosen confidence level. For
#' example, if the 95% confidence interval of a coefficient ranges from -1 to 1,
#' the underlying _full (normally or t-distributed) interval_ approximately
#' ranges from -1.9 to 1.9, see also following code:
#'
#' ```
#' # simulate full normal distribution
#' out <- bayestestR::distribution_normal(10000, 0, 0.5)
#' # range of "full" distribution
#' range(out)
#' # range of 95% CI
#' round(quantile(out, probs = c(0.025, 0.975)), 2)
#' ```
#'
#' This ensures that the SGPV always refers to the general compatible parameter
#' space of coefficients, independent from the confidence interval chosen for
#' testing practical equivalence. Therefore, the SGPV of the _full interval_ is
#' similar to the ROPE coverage of Bayesian equivalence tests, see following
#' code:
#'
#' ```
#' library(bayestestR)
#' library(brms)
#' m <- lm(mpg ~ gear + wt + cyl + hp, data = mtcars)
#' m2 <- brm(mpg ~ gear + wt + cyl + hp, data = mtcars)
#' # SGPV for frequentist models
#' equivalence_test(m)
#' # similar to ROPE coverage of Bayesian models
#' equivalence_test(m2)
#' # similar to ROPE coverage of simulated draws / bootstrap samples
#' equivalence_test(simulate_model(m))
#' ```
#'
#' ## ROPE range
#' Some attention is required for finding suitable values for the ROPE limits
#' (argument `range`). See 'Details' in [bayestestR::rope_range()]
#' for further information.
#'
#' @inheritSection model_parameters Statistical inference - how to quantify evidence
#'
#' @note There is also a [`plot()`-method](https://easystats.github.io/see/articles/parameters.html)
#' implemented in the [**see**-package](https://easystats.github.io/see/).
#'
#' @references
#'
#' - Amrhein, V., Korner-Nievergelt, F., and Roth, T. (2017). The earth is
#' flat (p > 0.05): Significance thresholds and the crisis of unreplicable
#' research. PeerJ, 5, e3544. \doi{10.7717/peerj.3544}
#'
#' - Blume, J. D., D'Agostino McGowan, L., Dupont, W. D., & Greevy, R. A.
#' (2018). Second-generation p-values: Improved rigor, reproducibility, &
#' transparency in statistical analyses. PLOS ONE, 13(3), e0188299.
#' https://doi.org/10.1371/journal.pone.0188299
#'
#' - Campbell, H., & Gustafson, P. (2018). Conditional equivalence
#' testing: An alternative remedy for publication bias. PLOS ONE, 13(4),
#' e0195145. doi: 10.1371/journal.pone.0195145
#'
#' - Greenland S, Rafi Z, Matthews R, Higgs M. To Aid Scientific Inference,
#' Emphasize Unconditional Compatibility Descriptions of Statistics. (2022)
#' https://arxiv.org/abs/1909.08583v7 (Accessed November 10, 2022)
#'
#' - Kruschke, J. K. (2014). Doing Bayesian data analysis: A tutorial with
#' R, JAGS, and Stan. Academic Press
#'
#' - Kruschke, J. K. (2018). Rejecting or accepting parameter values in
#' Bayesian estimation. Advances in Methods and Practices in Psychological
#' Science, 1(2), 270-280. doi: 10.1177/2515245918771304
#'
#' - Lakens, D. (2017). Equivalence Tests: A Practical Primer for t Tests,
#' Correlations, and Meta-Analyses. Social Psychological and Personality
#' Science, 8(4), 355–362. doi: 10.1177/1948550617697177
#'
#' - Lakens, D. (2024). Improving Your Statistical Inferences (Version v1.5.1).
#' Retrieved from https://lakens.github.io/statistical_inferences/.
#' \doi{10.5281/ZENODO.6409077}
#'
#' - Lakens, D., and Delacre, M. (2020). Equivalence Testing and the Second
#' Generation P-Value. Meta-Psychology, 4.
#' https://doi.org/10.15626/MP.2018.933
#'
#' - Lakens, D., Scheel, A. M., and Isager, P. M. (2018). Equivalence Testing
#' for Psychological Research: A Tutorial. Advances in Methods and Practices
#' in Psychological Science, 1(2), 259–269. \doi{10.1177/2515245918770963}
#'
#' - Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., and Lüdecke, D. (2019).
#' Indices of Effect Existence and Significance in the Bayesian Framework.
#' Frontiers in Psychology, 10, 2767. \doi{10.3389/fpsyg.2019.02767}
#'
#' - Pernet, C. (2017). Null hypothesis significance testing: A guide to
#' commonly misunderstood concepts and recommendations for good practice.
#' F1000Research, 4, 621. doi: 10.12688/f1000research.6963.5
#'
#' - Rafi Z, Greenland S. Semantic and cognitive tools to aid statistical
#' science: replace confidence and significance by compatibility and surprise.
#' BMC Medical Research Methodology (2020) 20:244.
#'
#' - Schweder T. Confidence is epistemic probability for empirical science.
#' Journal of Statistical Planning and Inference (2018) 195:116–125.
#' \doi{10.1016/j.jspi.2017.09.016}
#'
#' - Schweder T, Hjort NL. Frequentist analogues of priors and posteriors.
#' In Stigum, B. (ed.), Econometrics and the Philosophy of Economics: Theory
#' Data Confrontation in Economics, pp. 285-217. Princeton University Press,
#' Princeton, NJ, 2003
#'
#' - Vos P, Holbert D. Frequentist statistical inference without repeated sampling.
#' Synthese 200, 89 (2022). \doi{10.1007/s11229-022-03560-x}
#'
#' @return A data frame.
#' @examplesIf requireNamespace("sandwich")
#' data(qol_cancer)
#' model <- lm(QoL ~ time + age + education, data = qol_cancer)
#'
#' # default rule
#' equivalence_test(model)
#'
#' # using heteroscedasticity-robust standard errors
#' equivalence_test(model, vcov = "HC3")
#'
#' # conditional equivalence test
#' equivalence_test(model, rule = "cet")
#'
#' # plot method
#' if (require("see", quietly = TRUE)) {
#' result <- equivalence_test(model)
#' plot(result)
#' }
#' @export
equivalence_test.lm <- function(x,
range = "default",
ci = 0.95,
rule = "classic",
effects = "fixed",
vcov = NULL,
vcov_args = NULL,
verbose = TRUE,
...) {
rule <- insight::validate_argument(tolower(rule), c("bayes", "classic", "cet"))
out <- .equivalence_test_frequentist(
x,
range = range,
ci = ci,
rule = rule,
vcov = vcov,
vcov_args = vcov_args,
verbose,
...
)
if (is.null(attr(out, "pretty_names", exact = TRUE))) {
attr(out, "pretty_names") <- format_parameters(x)
}
attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(x))
attr(out, "rule") <- rule
class(out) <- c("equivalence_test_lm", "see_equivalence_test_lm", class(out))
out
}
# standard models, only fixed effects ----------------------
#' @export
equivalence_test.glm <- equivalence_test.lm
#' @export
equivalence_test.wbm <- equivalence_test.lm
#' @export
equivalence_test.lme <- equivalence_test.lm
#' @export
equivalence_test.gee <- equivalence_test.lm
#' @export
equivalence_test.gls <- equivalence_test.lm
#' @export
equivalence_test.feis <- equivalence_test.lm
#' @export
equivalence_test.felm <- equivalence_test.lm
#' @export
equivalence_test.mixed <- equivalence_test.lm
#' @export
equivalence_test.hurdle <- equivalence_test.lm
#' @export
equivalence_test.zeroinfl <- equivalence_test.lm
#' @export
equivalence_test.rma <- equivalence_test.lm
# mixed models, also random effects ----------------------
#' @export
equivalence_test.merMod <- function(x,
range = "default",
ci = 0.95,
rule = "classic",
effects = "fixed",
vcov = NULL,
vcov_args = NULL,
verbose = TRUE,
...) {
# ==== argument matching ====
rule <- insight::validate_argument(tolower(rule), c("bayes", "classic", "cet"))
effects <- insight::validate_argument(effects, c("fixed", "random"))
# ==== equivalent testing for fixed or random effects ====
if (effects == "fixed") {
out <- .equivalence_test_frequentist(
x,
range = range,
ci = ci,
rule = rule,
vcov = vcov,
vcov_args = vcov_args,
verbose,
...
)
} else {
out <- .equivalence_test_frequentist_random(x, range, ci, rule, verbose, ...)
}
# ==== result ====
if (is.null(attr(out, "pretty_names", exact = TRUE))) {
attr(out, "pretty_names") <- format_parameters(x)
}
attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(x))
attr(out, "rule") <- rule
class(out) <- c("equivalence_test_lm", "see_equivalence_test_lm", class(out))
out
}
#' @export
equivalence_test.glmmTMB <- equivalence_test.merMod
#' @export
equivalence_test.MixMod <- equivalence_test.merMod
# Special classes -------------------------
#' @export
equivalence_test.parameters_simulate_model <- function(x,
range = "default",
ci = 0.95,
verbose = TRUE,
...) {
# ==== retrieve model, to define rope range for simulated model parameters ====
model <- .get_object(x)
if (all(range == "default") && !is.null(model)) {
range <- bayestestR::rope_range(model, verbose = verbose)
} else if (!all(is.numeric(range)) || length(range) != 2) {
insight::format_error(
"`range` should be \"default\" or a vector of 2 numeric values (e.g., `c(-0.1, 0.1)`)."
)
}
# ==== classical equivalent testing for data frames ====
out <- equivalence_test(as.data.frame(x), range = range, ci = ci, verbose = verbose, ...)
if (is.null(attr(out, "pretty_names", exact = TRUE))) {
attr(out, "pretty_names") <- format_parameters(x)
}
attr(out, "object_name") <- attr(x, "object_name")
attr(out, "data") <- x
class(out) <- unique(c("equivalence_test", "see_equivalence_test", "equivalence_test_simulate_model", class(out)))
out
}
#' @export
equivalence_test.parameters_model <- function(x,
range = "default",
ci = 0.95,
rule = "classic",
verbose = TRUE,
...) {
model <- .get_object(x)
equivalence_test(x = model, range = range, ci = ci, rule = rule, verbose = verbose, ...)
}
#' @rdname equivalence_test.lm
#' @export
equivalence_test.ggeffects <- function(x,
range = "default",
rule = "classic",
test = "pairwise",
verbose = TRUE,
...) {
insight::check_if_installed("ggeffects")
# get attributes from ggeffects objects, so we have the original model and terms
focal <- attributes(x)$original.terms
obj_name <- attributes(x)$model.name
ci <- attributes(x)$ci.lvl
dof <- attributes(x)$df
x <- .get_ggeffects_model(x)
# validation check rope range
rule <- match.arg(tolower(rule), choices = c("bayes", "classic", "cet"))
range <- .check_rope_range(x, range, verbose)
out <- ggeffects::test_predictions(
x,
terms = focal,
test = test,
equivalence = range,
verbose = verbose,
...
)
out <- insight::standardize_names(out)
# we only have one type of CIs
conf_int <- conf_int2 <- as.data.frame(t(out[c("CI_low", "CI_high")]))
l <- Map(
function(ci_wide, ci_narrow) {
.equivalence_test_numeric(
ci = ci,
ci_wide,
ci_narrow,
range_rope = range,
rule = rule,
dof = dof,
verbose = verbose
)
}, conf_int, conf_int2
)
# bind to data frame
dat <- do.call(rbind, l)
# remove old CIs, bind results from equivalence test
out$CI_low <- out$CI_high <- NULL
out$CI <- ci
out <- cbind(out, dat)
# standardize column order
cols <- c(
"Estimate", "Contrast", "Slope", "Predicted", "CI", "CI_low", "CI_high",
"SGPV", "ROPE_low", "ROPE_high", "ROPE_Percentage", "ROPE_Equivalence", "p"
)
# order of shared columns
shared_order <- intersect(cols, colnames(out))
parameter_columns <- setdiff(colnames(out), shared_order)
# add remaining columns, sort
out <- out[c(parameter_columns, shared_order)]
attr(out, "object_name") <- obj_name
attr(out, "parameter_columns") <- parameter_columns
attr(out, "rule") <- rule
attr(out, "rope") <- range
class(out) <- c("equivalence_test_lm", "see_equivalence_test_ggeffects", "data.frame")
out
}
# helper -------------------
#' @keywords internal
.check_rope_range <- function(x, range, verbose) {
if (all(range == "default")) {
range <- bayestestR::rope_range(x, verbose = verbose)
if (is.list(range)) {
range <- range[[which.max(sapply(range, diff))]]
}
} else if (!all(is.numeric(range)) || length(range) != 2) {
insight::format_error(
"`range` should be \"default\" or a vector of 2 numeric values (e.g., `c(-0.1, 0.1)`)."
)
}
range
}
#' @keywords internal
.equivalence_test_frequentist <- function(x,
range = "default",
ci = 0.95,
rule = "classic",
vcov = NULL,
vcov_args = NULL,
verbose = TRUE,
...) {
# ==== define rope range ====
range <- .check_rope_range(x, range, verbose)
if (length(ci) > 1) {
insight::format_alert("`ci` may only be of length 1. Using first ci-value now.")
ci <- ci[1]
}
# ==== check degrees of freedom ====
df_column <- grep("(df|df_error)", colnames(x))
if (length(df_column) > 0) {
dof <- unique(x[[df_column]])
if (length(dof) > 1) {
dof <- Inf
}
} else {
dof <- Inf
}
# ==== requested confidence intervals ====
params <- conf_int <- .ci_generic(x, ci = ci, vcov = vcov, vcov_args = vcov_args, ...)
conf_int <- as.data.frame(t(conf_int[, c("CI_low", "CI_high")]))
# ==== the "narrower" intervals (1-2*alpha) for CET-rules. ====
alpha <- 1 - ci
conf_int2 <- .ci_generic(x, ci = (ci - alpha), vcov = vcov, vcov_args = vcov_args, ...)
conf_int2 <- as.data.frame(t(conf_int2[, c("CI_low", "CI_high")]))
# ==== equivalence test for each parameter ====
l <- Map(
function(ci_wide, ci_narrow) {
.equivalence_test_numeric(
ci = ci,
ci_wide,
ci_narrow,
range_rope = range,
rule = rule,
dof = dof,
verbose = verbose
)
}, conf_int, conf_int2
)
dat <- do.call(rbind, l)
if ("Component" %in% colnames(params)) dat$Component <- params$Component
out <- data.frame(
Parameter = params$Parameter,
CI = ifelse(rule == "bayes", ci, ci - alpha),
dat,
stringsAsFactors = FALSE
)
# ==== (adjusted) p-values for tests ====
out$p <- .add_p_to_equitest(x, ci, range, vcov = vcov, vcov_args = vcov_args, ...)
attr(out, "rope") <- range
out
}
#' @keywords internal
.equivalence_test_frequentist_random <- function(x,
range = "default",
ci = 0.95,
rule = "classic",
verbose = TRUE,
...) {
if (all(range == "default")) {
range <- bayestestR::rope_range(x, verbose = verbose)
} else if (!all(is.numeric(range)) || length(range) != 2) {
insight::format_error(
"`range` should be \"default\" or a vector of 2 numeric values (e.g., `c(-0.1, 0.1)`)."
)
}
if (length(ci) > 1) {
if (isTRUE(verbose)) {
insight::format_alert("`ci` may only be of length 1. Using first ci-value now.")
}
ci <- ci[1]
}
params <- insight::get_parameters(x, effects = "random", component = "conditional", verbose = FALSE)
se <- standard_error(x, effects = "random", component = "conditional")
alpha <- (1 + ci) / 2
fac <- stats::qnorm(alpha)
alpha_narrow <- (1 + ci - (1 - ci)) / 2
fac_narrow <- stats::qnorm(alpha_narrow)
out <- do.call(rbind, lapply(names(params), function(np) {
est <- params[[np]][, "(Intercept)"]
std_err <- se[[np]][, "(Intercept)"]
d <- data.frame(
Parameter = rownames(params[[np]]),
Estimate = est,
CI = ifelse(rule == "bayes", ci, ci - (1 - ci)),
Group = np,
stringsAsFactors = FALSE
)
conf_int <- as.data.frame(t(data.frame(
CI_low = est - std_err * fac,
CI_high = est + std_err * fac
)))
conf_int2 <- as.data.frame(t(data.frame(
CI_low = est - std_err * fac_narrow,
CI_high = est + std_err * fac_narrow
)))
l <- Map(
function(ci_wide, ci_narrow) {
.equivalence_test_numeric(
ci = ci,
ci_wide,
ci_narrow,
range_rope = range,
rule = rule,
verbose = verbose
)
}, conf_int, conf_int2
)
dat <- do.call(rbind, l)
cbind(d, dat)
}))
attr(out, "rope") <- range
out
}
#' @keywords internal
.equivalence_test_numeric <- function(ci = 0.95,
ci_wide,
ci_narrow,
range_rope,
rule,
dof = Inf,
verbose) {
final_ci <- NULL
# ==== HDI+ROPE decision rule, by Kruschke ====
if (rule == "bayes") {
final_ci <- ci_wide
if (min(ci_wide) > max(range_rope) || max(ci_wide) < min(range_rope)) {
decision <- "Rejected"
} else if (max(ci_wide) <= max(range_rope) && min(ci_wide) >= min(range_rope)) {
decision <- "Accepted"
} else {
decision <- "Undecided"
}
}
# ==== Lakens' rule ====
if (rule == "classic") {
final_ci <- ci_narrow
if (all(ci_narrow < max(range_rope)) && all(ci_narrow > min(range_rope))) {
# narrow CI is fully inside ROPE - always accept
decision <- "Accepted"
} else if (min(ci_narrow) < 0 && max(ci_narrow) > 0) {
# non-significant results - undecided
decision <- "Undecided"
} else {
decision <- "Rejected"
}
}
# ==== CET rule ====
if (rule == "cet") {
final_ci <- ci_narrow
# significant result?
if (min(ci_wide) > 0 || max(ci_wide) < 0) {
decision <- "Rejected"
# non-significant results, all narrow CI inside ROPE
} else if (all(ci_narrow < max(range_rope)) && all(ci_narrow > min(range_rope))) {
decision <- "Accepted"
} else {
decision <- "Undecided"
}
}
data.frame(
CI_low = final_ci[1],
CI_high = final_ci[2],
SGPV = .rope_coverage(ci = ci, range_rope, ci_range = final_ci, dof = dof),
ROPE_low = range_rope[1],
ROPE_high = range_rope[2],
ROPE_Equivalence = decision,
stringsAsFactors = FALSE
)
}
# helper ---------------------
# this function simply takes the length of the range and calculates the proportion
# of that range that is inside the rope. However, this assumed a "flat", i.e.
# uniformly distributed interval, which is not accurate for standard confidence
# intervals. thus, we no longer use this function, but switch to ".rope_coverage()".
.sgpv <- function(range_rope, ci) {
diff_rope <- abs(diff(range_rope))
diff_ci <- abs(diff(ci))
# inside?
if (min(ci) >= min(range_rope) && max(ci) <= max(range_rope)) {
coverage <- 1
# outside?
} else if (max(ci) < min(range_rope) || min(ci) > max(range_rope)) {
coverage <- 0
# CI covers completely rope?
} else if (max(ci) > max(range_rope) && min(ci) < min(range_rope)) {
coverage <- diff_rope / diff_ci
# CI inside rope and outside max rope?
} else if (min(ci) >= min(range_rope) && max(ci) > max(range_rope)) {
diff_in_rope <- max(range_rope) - min(ci)
coverage <- diff_in_rope / diff_ci
# CI inside rope and outside min rope?
} else if (max(ci) <= max(range_rope) && min(ci) < min(range_rope)) {
diff_in_rope <- max(ci) - min(range_rope)
coverage <- diff_in_rope / diff_ci
}
coverage
}
# this function simulates a normal distribution, which approximately has the
# same range / limits as the confidence interval, thus indeed representing a
# normally distributed confidence interval. We then calculate the probability
# mass of this interval that is inside the ROPE.
.rope_coverage <- function(ci = 0.95, range_rope, ci_range, dof = Inf) {
out <- .generate_posterior_from_ci(ci, ci_range, dof = dof)
# compare: ci_range and range(out)
# The SGPV refers to the proportion of the confidence interval inside the
# full ROPE - thus, we set ci = 1 here
rc <- bayestestR::rope(out, range = range_rope, ci = 1)
rc$ROPE_Percentage
}
.generate_posterior_from_ci <- function(ci = 0.95, ci_range, dof = Inf, precision = 10000) {
# this function creates an approximate normal distribution that covers the
# CI-range, i.e. we "simulate" a posterior distribution from a frequentist CI
# sanity check - dof argument
if (is.null(dof)) {
dof <- Inf
}
# first we need the range of the CI (in units), also to calculate the mean of
# the normal distribution
diff_ci <- abs(diff(ci_range))
mean_dist <- ci_range[2] - (diff_ci / 2)
# then we need the critical values of the quantiles from the CI range
z_value <- stats::qt((1 + ci) / 2, df = dof)
# the range of Z-scores (from lower to upper quantile) gives us the range of
# the provided interval in terms of standard deviations. now we divide the
# known range of the provided CI (in units) by the z-score-range, which will
# give us the standard deviation of the distribution.
sd_dist <- diff_ci / diff(c(-1 * z_value, z_value))
# generate normal-distribution if we don't have t-distribution, or if
# we don't have necessary packages installed
if (is.infinite(dof) || !insight::check_if_installed("distributional", quietly = TRUE)) {
# tell user to install "distributional"
if (!is.infinite(dof)) {
insight::format_alert("For models with only few degrees of freedom, install the {distributional} package to increase accuracy of `p_direction()`, `p_significance()` and `equivalence_test()`.") # nolint
}
# we now know all parameters (mean and sd) to simulate a normal distribution
bayestestR::distribution_normal(n = precision, mean = mean_dist, sd = sd_dist)
} else {
insight::check_if_installed("distributional")
out <- distributional::dist_student_t(df = dof, mu = mean_dist, sigma = sd_dist)
sort(unlist(distributional::generate(out, times = precision), use.names = FALSE))
}
}
.add_p_to_equitest <- function(model, ci, range, vcov = NULL, vcov_args = NULL, ...) {
tryCatch(
{
params <- insight::get_parameters(model)
# degrees of freedom
dof <- insight::get_df(x = model, type = "wald")
# mu
params$mu <- params$Estimate * -1
# se
se <- standard_error(model, vcov = vcov, vcov_args = vcov_args, ...)
stats::pt((range[1] - params$mu) / se$SE, df = dof, lower.tail = TRUE) +
stats::pt((range[2] - params$mu) / se$SE, df = dof, lower.tail = FALSE)
},
error = function(e) {
NULL
}
)
}
# methods ----------------
#' @export
format.equivalence_test_lm <- function(x,
digits = 2,
ci_digits = digits,
p_digits = 3,
ci_width = NULL,
ci_brackets = NULL,
format = "text",
zap_small = FALSE,
...) {
# default brackets are parenthesis for HTML / MD
if ((is.null(ci_brackets) || isTRUE(ci_brackets)) && (identical(format, "html") || identical(format, "markdown"))) {
ci_brackets <- c("(", ")")
} else if (is.null(ci_brackets) || isTRUE(ci_brackets)) {
ci_brackets <- c("[", "]")
}
# main formatting
out <- insight::format_table(
x,
digits = digits,
ci_digits = ci_digits,
p_digits = p_digits,
ci_width = ci_width,
ci_brackets = ci_brackets,
zap_small = zap_small,
...
)
# format column names
colnames(out)[which(colnames(out) == "Equivalence (ROPE)")] <- "Equivalence"
out$ROPE <- NULL
# only show supported components
if ("Component" %in% colnames(out)) {
out <- out[out$Component %in% c("conditional", "count"), ]
}
out
}
#' @export
print.equivalence_test_lm <- function(x,
digits = 2,
ci_digits = digits,
p_digits = 3,
ci_brackets = NULL,
zap_small = FALSE,
...) {
orig_x <- x
rule <- attributes(x)$rule
if (is.null(rule)) {
insight::print_color("# Test for Practical Equivalence\n\n", "blue")
} else if (rule == "cet") {
insight::print_color("# Conditional Equivalence Testing\n\n", "blue")
} else if (rule == "classic") {
insight::print_color("# TOST-test for Practical Equivalence\n\n", "blue")
} else {
insight::print_color("# Test for Practical Equivalence\n\n", "blue")
}
.rope <- attr(x, "rope", exact = TRUE)
cat(sprintf(" ROPE: [%.*f %.*f]\n\n", digits, .rope[1], digits, .rope[2]))
# formatting
x <- format(x,
digits = digits,
ci_digits = ci_digits,
p_digits = p_digits,
ci_width = "auto",
ci_brackets = ci_brackets,
format = "text",
zap_small = zap_small,
...
)
if ("Group" %in% colnames(x)) {
out <- split(x, x$Group)
for (i in names(out)) {
insight::print_color(sprintf("Group: %s\n\n", i), "red")
cat(insight::export_table(out[[i]]))
}
} else {
cat(insight::export_table(x))
}
invisible(orig_x)
}
#' @export
plot.equivalence_test_lm <- function(x, ...) {
insight::check_if_installed("see")
NextMethod()
}
|