1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
|
# classes: .aov, .anova, aovlist, anova.rms, maov, afex_aov
# .aov ------
#' Parameters from ANOVAs
#'
#' @param model Object of class [aov()], [anova()],
#' `aovlist`, `Gam`, [manova()], `Anova.mlm`,
#' `afex_aov` or `maov`.
#' @param es_type The effect size of interest. Not that possibly not all
#' effect sizes are applicable to the model object. See 'Details'. For Anova
#' models, can also be a character vector with multiple effect size names.
#' @param df_error Denominator degrees of freedom (or degrees of freedom of the
#' error estimate, i.e., the residuals). This is used to compute effect sizes
#' for ANOVA-tables from mixed models. See 'Examples'. (Ignored for
#' `afex_aov`.)
#' @param type Numeric, type of sums of squares. May be 1, 2 or 3. If 2 or 3,
#' ANOVA-tables using `car::Anova()` will be returned. (Ignored for
#' `afex_aov`.)
#' @param ci Confidence Interval (CI) level for effect sizes specified in
#' `es_type`. The default, `NULL`, will compute no confidence
#' intervals. `ci` should be a scalar between 0 and 1.
#' @param test String, indicating the type of test for `Anova.mlm` to be
#' returned. If `"multivariate"` (or `NULL`), returns the summary of
#' the multivariate test (that is also given by the `print`-method). If
#' `test = "univariate"`, returns the summary of the univariate test.
#' @param power Logical, if `TRUE`, adds a column with power for each
#' parameter.
#' @param table_wide Logical that decides whether the ANOVA table should be in
#' wide format, i.e. should the numerator and denominator degrees of freedom
#' be in the same row. Default: `FALSE`.
#' @param alternative A character string specifying the alternative hypothesis;
#' Controls the type of CI returned: `"two.sided"` (default, two-sided CI),
#' `"greater"` or `"less"` (one-sided CI). Partial matching is allowed
#' (e.g., `"g"`, `"l"`, `"two"`...). See section *One-Sided CIs* in
#' the [effectsize_CIs vignette](https://easystats.github.io/effectsize/).
#' @inheritParams model_parameters.default
#' @param ... Arguments passed to [`effectsize::effectsize()`]. For example,
#' to calculate _partial_ effect sizes types, use `partial = TRUE`. For objects
#' of class `htest` or `BFBayesFactor`, `adjust = TRUE` can be used to return
#' bias-corrected effect sizes, which is advisable for small samples and large
#' tables. See also
#' [`?effectsize::eta_squared`](https://easystats.github.io/effectsize/reference/eta_squared.html)
#' for arguments `partial` and `generalized`;
#' [`?effectsize::phi`](https://easystats.github.io/effectsize/reference/phi.html)
#' for `adjust`; and
#' [`?effectsize::oddratio`](https://easystats.github.io/effectsize/reference/oddsratio.html)
#' for `log`.
#'
#' @return A data frame of indices related to the model's parameters.
#'
#' @inherit effectsize::effectsize details
#'
#' @note For ANOVA-tables from mixed models (i.e. `anova(lmer())`), only
#' partial or adjusted effect sizes can be computed. Note that type 3 ANOVAs
#' with interactions involved only give sensible and informative results when
#' covariates are mean-centred and factors are coded with orthogonal contrasts
#' (such as those produced by `contr.sum`, `contr.poly`, or
#' `contr.helmert`, but *not* by the default `contr.treatment`).
#'
#' @examplesIf requireNamespace("effectsize", quietly = TRUE)
#' df <- iris
#' df$Sepal.Big <- ifelse(df$Sepal.Width >= 3, "Yes", "No")
#'
#' model <- aov(Sepal.Length ~ Sepal.Big, data = df)
#' model_parameters(model)
#'
#' model_parameters(model, es_type = c("omega", "eta"), ci = 0.9)
#'
#' model <- anova(lm(Sepal.Length ~ Sepal.Big, data = df))
#' model_parameters(model)
#' model_parameters(
#' model,
#' es_type = c("omega", "eta", "epsilon"),
#' alternative = "greater"
#' )
#'
#' model <- aov(Sepal.Length ~ Sepal.Big + Error(Species), data = df)
#' model_parameters(model)
#'
#' @examplesIf requireNamespace("lme4", quietly = TRUE) && requireNamespace("effectsize", quietly = TRUE)
#' \donttest{
#' df <- iris
#' df$Sepal.Big <- ifelse(df$Sepal.Width >= 3, "Yes", "No")
#' mm <- lme4::lmer(Sepal.Length ~ Sepal.Big + Petal.Width + (1 | Species), data = df)
#' model <- anova(mm)
#'
#' # simple parameters table
#' model_parameters(model)
#'
#' # parameters table including effect sizes
#' model_parameters(
#' model,
#' es_type = "eta",
#' ci = 0.9,
#' df_error = dof_satterthwaite(mm)[2:3]
#' )
#' }
#' @export
model_parameters.aov <- function(model,
type = NULL,
df_error = NULL,
ci = NULL,
alternative = NULL,
test = NULL,
power = FALSE,
es_type = NULL,
keep = NULL,
drop = NULL,
table_wide = FALSE,
verbose = TRUE,
...) {
# save model object, for later checks
original_model <- model
object_name <- insight::safe_deparse_symbol(substitute(model))
if (inherits(model, "aov") && !is.null(type) && type > 1) {
if (requireNamespace("car", quietly = TRUE)) {
model <- car::Anova(model, type = type)
} else {
insight::format_warning("Package {.pkg car} required for type-2 or type-3 Anova. Defaulting to type-1.")
}
}
# try to extract type of anova table
if (is.null(type)) {
type <- .anova_type(model, verbose = verbose)
}
# exceptions
if (.is_levenetest(model)) {
return(model_parameters.htest(model, ...))
}
# check contrasts
if (verbose) {
.check_anova_contrasts(original_model, type)
}
# extract standard parameters
params <- .extract_parameters_anova(model, test)
# add effect sizes, if available
params <- .effectsizes_for_aov(
model,
params = params,
es_type = es_type,
df_error = df_error,
ci = ci,
alternative = alternative,
verbose = FALSE, # we get messages for contrasts before
...
)
# add power, if possible
if (isTRUE(power)) {
params <- .power_for_aov(model, params)
}
# filter parameters
if (!is.null(keep) || !is.null(drop)) {
params <- .filter_parameters(params,
keep = keep,
drop = drop,
verbose = verbose
)
}
# wide or long?
if (table_wide) {
params <- .anova_table_wide(params)
}
# add attributes
params <- .add_anova_attributes(params, model, ci, test = test, alternative = alternative, ...)
class(params) <- c("parameters_model", "see_parameters_model", class(params))
attr(params, "object_name") <- object_name
params
}
#' @export
standard_error.aov <- function(model, ...) {
params <- model_parameters(model)
.data_frame(
Parameter = params$Parameter,
SE = params$SE
)
}
#' @export
p_value.aov <- function(model, ...) {
params <- model_parameters(model)
if (nrow(params) == 0) {
return(NA)
}
if ("Group" %in% names(params)) {
params <- params[params$Group == "Within", ]
}
if ("Residuals" %in% params$Parameter) {
params <- params[params$Parameter != "Residuals", ]
}
if (!"p" %in% names(params)) {
return(NA)
}
.data_frame(
Parameter = params$Parameter,
p = params$p
)
}
# .anova ------
#' @export
standard_error.anova <- standard_error.aov
#' @export
p_value.anova <- p_value.aov
#' @export
model_parameters.anova <- model_parameters.aov
# .aov.list ------
#' @export
standard_error.aovlist <- standard_error.aov
#' @export
p_value.aovlist <- p_value.aov
#' @export
model_parameters.aovlist <- model_parameters.aov
# .afex_aov ------
#' @export
model_parameters.afex_aov <- function(model,
es_type = NULL,
df_error = NULL,
type = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...) {
if (inherits(model$Anova, "Anova.mlm")) {
params <- model$anova_table
with_df_and_p <- summary(model$Anova)$univariate.tests
params$`Sum Sq` <- with_df_and_p[-1, 1]
params$`Error SS` <- with_df_and_p[-1, 3]
out <- .extract_parameters_anova(params, test = NULL)
} else {
out <- .extract_parameters_anova(model$Anova, test = NULL)
}
out <- .effectsizes_for_aov(
model,
params = out,
es_type = es_type,
df_error = df_error,
verbose = verbose,
...
)
# add attributes
out <- .add_anova_attributes(out, model, ci, test = NULL, alternative = NULL, ...)
# filter parameters
if (!is.null(keep) || !is.null(drop)) {
out <- .filter_parameters(out,
keep = keep,
drop = drop,
verbose = verbose
)
}
if (!"Method" %in% names(out)) {
out$Method <- "ANOVA estimation for factorial designs using 'afex'"
}
attr(out, "title") <- unique(out$Method)
attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(model))
class(out) <- unique(c("parameters_model", "see_parameters_model", class(out)))
out
}
# others ------
#' @export
model_parameters.anova.rms <- model_parameters.aov
#' @export
model_parameters.Anova.mlm <- model_parameters.aov
#' @export
model_parameters.maov <- model_parameters.aov
#' @export
model_parameters.seqanova.svyglm <- model_parameters.aov
# helper ------------------------------
.anova_type <- function(model, type = NULL, verbose = TRUE) {
if (is.null(type)) {
type_to_numeric <- function(type) {
if (is.numeric(type)) {
return(type)
}
# nolint start
switch(type,
`1` = ,
`I` = 1,
`2` = ,
`II` = 2,
`3` = ,
`III` = 3,
1
)
# nolint end
}
# default to 1
type <- 1
if (inherits(model, "anova.rms")) {
type <- 2
} else if (!is.null(attr(model, "type", exact = TRUE))) {
type <- type_to_numeric(attr(model, "type", exact = TRUE))
} else if (!is.null(attr(model, "heading"))) {
heading <- attr(model, "heading")[1]
if (grepl("(.*)Type (.*) Wald(.*)", heading)) {
type <- type_to_numeric(insight::trim_ws(gsub("(.*)Type (.*) Wald(.*)", "\\2", heading)))
} else if (grepl("Type (.*) Analysis(.*)", heading)) {
type <- type_to_numeric(insight::trim_ws(gsub("Type (.*) Analysis(.*)", "\\1", heading)))
} else if (grepl("(.*)Type (.*) tests(.*)", heading)) {
type <- type_to_numeric(insight::trim_ws(gsub("(.*)Type (.*) tests(.*)", "\\2", heading)))
}
} else if ("type" %in% names(model) && !is.null(model$type)) {
type <- type_to_numeric(model$type)
}
}
type
}
.anova_alternative <- function(params, alternative) {
alternative_footer <- NULL
if (!is.null(alternative)) {
alternative <- insight::validate_argument(
tolower(alternative),
c("two.sided", "greater", "less")
)
if (alternative != "two.sided") {
ci_low <- which(endsWith(colnames(params), "CI_low"))
ci_high <- which(endsWith(colnames(params), "CI_high"))
if (length(ci_low) && length(ci_high)) {
bound <- if (alternative == "less") params[[ci_low[1]]][1] else params[[ci_high[1]]][1]
bound <- insight::format_value(bound, digits = 2)
side <- if (alternative == "less") "lower" else "upper"
alternative_footer <- sprintf(
"One-sided CIs: %s bound fixed at [%s].",
side, bound
)
}
}
}
alternative_footer
}
.check_anova_contrasts <- function(model, type) {
# check only valid for anova tables of type III
if (!is.null(type) && type == 3) {
# check for interaction terms
interaction_terms <- tryCatch(
{
insight::find_interactions(model, flatten = TRUE)
},
error = function(e) {
if (is.data.frame(model)) {
if (any(grepl(":", row.names(model), fixed = TRUE))) {
TRUE
} else {
NULL
}
}
}
)
# try to access data of model predictors
predictors <- .safe(insight::get_predictors(model))
# if data available, check contrasts and mean centering
if (is.null(predictors)) {
treatment_contrasts_or_not_centered <- FALSE
} else {
treatment_contrasts_or_not_centered <- vapply(predictors, function(i) {
if (is.factor(i)) {
cn <- stats::contrasts(i)
if (is.null(cn) || (all(cn %in% c(0, 1)))) {
return(TRUE)
}
} else if (abs(mean(i, na.rm = TRUE)) > 1e-2) {
return(TRUE)
}
FALSE
}, TRUE)
}
# successfully checked predictors, or if not possible, at least found interactions?
if (!is.null(interaction_terms) && (any(treatment_contrasts_or_not_centered) || is.null(predictors))) {
insight::format_alert(
"Type 3 ANOVAs only give sensible and informative results when covariates are mean-centered and factors are coded with orthogonal contrasts (such as those produced by `contr.sum`, `contr.poly`, or `contr.helmert`, but *not* by the default `contr.treatment`)." # nolint
)
}
}
}
.effectsizes_for_aov <- function(model,
params,
es_type = NULL,
df_error = NULL,
ci = NULL,
alternative = NULL,
verbose = TRUE,
...) {
# user actually does not want to compute effect sizes
if (is.null(es_type)) {
return(params)
}
# is valid effect size?
if (!all(es_type %in% c("eta", "omega", "epsilon", "f", "f2"))) {
return(params)
}
insight::check_if_installed("effectsize")
# set error-df, when provided.
if (!is.null(df_error) && is.data.frame(model) &&
!any(c("DenDF", "den Df", "denDF", "df_error") %in% colnames(model))) {
if (length(df_error) > nrow(model)) {
insight::format_error(
"Number of degrees of freedom in argument `df_error` is larger than number of parameters."
)
}
model$df_error <- df_error
}
# multiple effect sizes possible
for (es in es_type) {
fx <- effectsize::effectsize(
model,
type = es,
ci = ci,
alternative = alternative,
verbose = verbose,
...
)
params <- .add_effectsize_to_parameters(fx, params)
# warn only once
verbose <- FALSE
}
params
}
# internals --------------------------
# add effect size column and related CI to the parameters
# data frame, automatically detecting the effect size name
.add_effectsize_to_parameters <- function(fx, params) {
if (!is.null(fx$CI_low)) {
# find name of current effect size
es <- effectsize::get_effectsize_name(colnames(fx))
# and add CI-name to effect size, to have specific
# CI columns for this particular effect size
ci_low <- paste0(gsub("_partial$", "", es), "_CI_low")
ci_high <- paste0(gsub("_partial$", "", es), "_CI_high")
# rename columns
fx[[ci_low]] <- fx$CI_low
fx[[ci_high]] <- fx$CI_high
# delete old or duplicated columns
fx$CI_low <- NULL
fx$CI_high <- NULL
fx$CI <- NULL
}
params$.id <- seq_len(nrow(params))
params <- merge(
params,
fx,
all.x = TRUE,
sort = FALSE,
by = intersect(c("Response", "Group", "Parameter"), intersect(colnames(params), colnames(fx)))
)
params <- params[order(params$.id), ]
params$.id <- NULL
params
}
.is_levenetest <- function(x) {
inherits(x, "anova") &&
!is.null(attributes(x)$heading) &&
all(isTRUE(grepl("Levene's Test", attributes(x)$heading, fixed = TRUE)))
}
# data: A dataframe from `model_parameters`
# ... Currently ignored
.anova_table_wide <- function(data, ...) {
wide_anova <- function(x) {
# creating numerator and denominator degrees of freedom
idxResid <- which(x$Parameter == "Residuals")
if (length(idxResid)) {
x$df_error <- x$df[idxResid]
x$Sum_Squares_Error <- x$Sum_Squares[idxResid]
x$Mean_Square_Error <- x$Mean_Square[idxResid]
x <- x[-idxResid, ]
}
x
}
if ("Group" %in% colnames(data)) {
data <- split(data, data$Group)
data <- lapply(data, wide_anova)
data <- Filter(function(x) nrow(x) >= 1L, data)
cols <- unique(unlist(lapply(data, colnames)))
data <- lapply(data, function(x) {
x[, setdiff(cols, colnames(x))] <- NA
x
})
data <- do.call(rbind, data)
} else {
data <- wide_anova(data)
}
# reorder columns
col_order <- union(c("Parameter", "F", "df", "df_error", "p"), names(data))
data[, col_order]
}
|