File: methods_base.R

package info (click to toggle)
r-cran-parameters 0.24.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,852 kB
  • sloc: sh: 16; makefile: 2
file content (153 lines) | stat: -rw-r--r-- 4,024 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#' @rdname model_parameters.brmsfit
#' @export
model_parameters.data.frame <- function(model,
                                        as_draws = FALSE,
                                        exponentiate = FALSE,
                                        verbose = TRUE,
                                        ...) {
  # treat data frame as bootstraps/posteriors?
  if (isTRUE(as_draws)) {
    return(model_parameters.draws(model, exponentiate = exponentiate, verbose = verbose, ...))
  }
  if (isTRUE(verbose)) {
    insight::format_warning(
      "A `data.frame` object is no valid regression model object and cannot be used with `model_parameters()`."
    )
  }
  NULL
}


# Standard Errors from standard classes ---------------------------------------------


#' @rdname standard_error
#' @export
standard_error.factor <- function(model, force = FALSE, verbose = TRUE, ...) {
  if (!force) {
    if (verbose) {
      insight::format_warning("Can't compute standard error of non-numeric variables.")
    }
    return(NA)
  }
  standard_error(as.numeric(model), ...)
}


#' @export
standard_error.character <- standard_error.factor


#' @export
standard_error.numeric <- function(model, ...) {
  sqrt(stats::var(model, na.rm = TRUE) / length(stats::na.omit(model)))
}


#' @export
standard_error.data.frame <- function(model, verbose = TRUE, ...) {
  unlist(sapply(model, standard_error, verbose = verbose))
}


#' @export
standard_error.list <- function(model, verbose = TRUE, ...) {
  if ("gam" %in% names(model)) {
    model <- model$gam
    class(model) <- c("gam", "lm", "glm")
    standard_error(model)
  } else if (isTRUE(verbose)) {
    insight::print_color("\nCould not extract standard errors from model object.\n", "red")
  }
}


#' @export
standard_error.table <- function(model, ...) {
  # compute standard error of proportions
  if (length(dim(model)) == 1) {
    total.n <- as.vector(sum(model))
    rel.frq <- as.vector(model) / total.n

    out <- .data_frame(
      Value = names(model),
      Proportion = rel.frq,
      SE = suppressWarnings(sqrt(rel.frq * (1 - rel.frq) / total.n))
    )
  } else {
    out <- NA
  }

  out
}


#' @export
standard_error.xtabs <- standard_error.table


#' @export
standard_error.parameters_standardized <- function(model, verbose = TRUE, ...) {
  se <- attr(model, "standard_error")

  if (is.null(se)) {
    if (isTRUE(verbose)) {
      insight::print_color("\nCould not extract standard errors of standardized coefficients.\n", "red")
    }
    return(NULL)
  }

  # for "refit" method
  if (is.data.frame(se) && "SE" %in% colnames(se)) {
    se <- se$SE
  }

  out <- .data_frame(
    Parameter = model$Parameter,
    SE = as.vector(se)
  )

  insight::text_remove_backticks(out, verbose = FALSE)
}


# p-Values from standard classes ---------------------------------------------

#' @export
p_value.numeric <- function(model, null = 0, ...) {
  # k_lt0 <- sum(model <= 0)
  # k_gt0 <- sum(model >= 0)
  # k <- 2 * min(k_lt0, k_gt0)
  # N <- length(model)

  # https://blogs.sas.com/content/iml/2011/11/02/how-to-compute-p-values-for-a-bootstrap-distribution.html
  # https://stats.stackexchange.com/a/28725/293056
  x <- stats::na.omit(model)
  xM <- mean(x)
  x0 <- x - xM
  k <- sum(abs(x0) > abs(xM - null)) # two tailed p-value
  N <- length(x)
  (k + 1) / (N + 1)
}


#' @export
p_value.data.frame <- function(model, ...) {
  model_data <- model[vapply(model, is.numeric, TRUE)]
  .data_frame(
    Parameter = names(model_data),
    p = vapply(model_data, p_value, 1)
  )
}


#' @export
p_value.list <- function(model, method = NULL, verbose = TRUE, ...) {
  if ("gam" %in% names(model)) {
    model <- model$gam
    class(model) <- c("gam", "lm", "glm")
    p_value(model, method = method)
  } else if (isTRUE(verbose)) {
    insight::format_warning("Could not extract p-values from model object.")
  }
}