1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
############# .merMod -----------------
#' @export
model_parameters.merMod <- function(model,
ci = 0.95,
ci_method = NULL,
ci_random = NULL,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
effects = "all",
group_level = FALSE,
exponentiate = FALSE,
p_adjust = NULL,
vcov = NULL,
vcov_args = NULL,
wb_component = TRUE,
include_info = getOption("parameters_mixed_info", FALSE),
include_sigma = FALSE,
keep = NULL,
drop = NULL,
verbose = TRUE,
...) {
dots <- list(...)
# set default
if (is.null(ci_method)) {
if (isTRUE(bootstrap)) {
ci_method <- "quantile"
} else {
ci_method <- switch(insight::find_statistic(model),
`t-statistic` = "residual",
"wald"
)
}
}
# p-values, CI and se might be based of wald, or KR
ci_method <- tolower(ci_method)
if (isTRUE(bootstrap)) {
ci_method <- insight::validate_argument(
ci_method,
c("hdi", "quantile", "ci", "eti", "si", "bci", "bcai")
)
} else {
ci_method <- insight::validate_argument(
ci_method,
c(
"wald", "normal", "residual", "ml1", "betwithin", "satterthwaite",
"kenward", "kr", "boot", "profile", "uniroot"
)
)
}
# which component to return?
effects <- insight::validate_argument(
effects,
c("fixed", "random", "total", "random_total", "all")
)
params <- params_random <- params_variance <- NULL
# for coef(), we don't need all the attributes and just stop here
if (effects %in% c("total", "random_total")) {
params <- .group_level_total(model)
params$Effects <- "total"
class(params) <- c("parameters_coef", "see_parameters_coef", class(params))
return(params)
}
# post hoc standardize only works for fixed effects...
if (!is.null(standardize) && standardize != "refit") {
if (!missing(effects) && effects != "fixed" && verbose) {
insight::format_alert(
"Standardizing coefficients only works for fixed effects of the mixed model."
)
}
effects <- "fixed"
}
# for refit, we completely refit the model, than extract parameters,
# ci etc. as usual - therefor, we set "standardize" to NULL
if (!is.null(standardize) && standardize == "refit") {
model <- datawizard::standardize(model, verbose = FALSE)
standardize <- NULL
}
if (effects %in% c("fixed", "all")) {
# Processing
if (bootstrap) {
params <- bootstrap_parameters(
model,
iterations = iterations,
ci = ci,
...
)
if (effects != "fixed") {
effects <- "fixed"
if (verbose) {
insight::format_alert("Bootstrapping only returns fixed effects of the mixed model.")
}
}
} else {
fun_args <- list(
model,
ci = ci,
ci_method = ci_method,
standardize = standardize,
p_adjust = p_adjust,
wb_component = wb_component,
keep_parameters = keep,
drop_parameters = drop,
verbose = verbose,
include_sigma = include_sigma,
include_info = include_info,
vcov = vcov,
vcov_args = vcov_args
)
fun_args <- c(fun_args, dots)
params <- do.call(".extract_parameters_mixed", fun_args)
}
params$Effects <- "fixed"
# exponentiate coefficients and SE/CI, if requested
params <- .exponentiate_parameters(params, model, exponentiate)
}
att <- attributes(params)
if (effects %in% c("random", "all") && isTRUE(group_level)) {
params_random <- .extract_random_parameters(model, ci = ci, effects = effects)
}
if (effects %in% c("random", "all") && isFALSE(group_level)) {
params_variance <- .extract_random_variances(
model,
ci = ci,
effects = effects,
ci_method = ci_method,
ci_random = ci_random,
verbose = verbose
)
}
# merge random and fixed effects, if necessary
if (!is.null(params) && (!is.null(params_random) || !is.null(params_variance))) {
params$Level <- NA
params$Group <- ""
if (is.null(params_random)) {
params <- params[match(colnames(params_variance), colnames(params))]
} else {
params <- params[match(colnames(params_random), colnames(params))]
}
}
params <- rbind(params, params_random, params_variance)
# remove empty column
if (!is.null(params$Level) && all(is.na(params$Level))) {
params$Level <- NULL
}
# due to rbind(), we lose attributes from "extract_parameters()",
# so we add those attributes back here...
if (!is.null(att)) {
attributes(params) <- utils::modifyList(att, attributes(params))
}
params <- .add_model_parameters_attributes(
params,
model,
ci = ci,
exponentiate,
bootstrap,
iterations,
ci_method = ci_method,
p_adjust = p_adjust,
verbose = verbose,
include_info = include_info,
group_level = group_level,
wb_component = wb_component,
...
)
attr(params, "object_name") <- insight::safe_deparse_symbol(substitute(model))
class(params) <- c("parameters_model", "see_parameters_model", class(params))
params
}
#' @export
ci.merMod <- function(x,
ci = 0.95,
dof = NULL,
method = "wald",
iterations = 500,
...) {
method <- tolower(method)
method <- insight::validate_argument(method, c(
"wald", "ml1", "betwithin", "kr",
"satterthwaite", "kenward", "boot",
"profile", "residual", "normal"
))
# bootstrapping
if (method == "boot") {
out <- lapply(ci, function(ci, x) .ci_boot_merMod(x, ci, iterations, ...), x = x)
out <- do.call(rbind, out)
row.names(out) <- NULL
# profiled CIs
} else if (method == "profile") {
pp <- suppressWarnings(stats::profile(x, which = "beta_"))
out <- lapply(ci, function(i) .ci_profile_merMod(x, ci = i, profiled = pp, ...))
out <- do.call(rbind, out)
# all others
} else {
out <- .ci_generic(model = x, ci = ci, dof = dof, method = method, ...)
}
out
}
#' @export
standard_error.merMod <- function(model,
effects = "fixed",
method = NULL,
vcov = NULL,
vcov_args = NULL,
...) {
dots <- list(...)
effects <- insight::validate_argument(effects, c("fixed", "random"))
if (effects == "random") {
out <- .standard_errors_random(model)
return(out)
}
if (is.null(method)) {
method <- "wald"
} else if ((method == "robust" && is.null(vcov)) ||
# deprecated argument
isTRUE(list(...)[["robust"]])) {
vcov <- "vcovHC"
}
if (!is.null(vcov) || isTRUE(dots[["robust"]])) {
fun_args <- list(model,
vcov = vcov,
vcov_args = vcov_args
)
fun_args <- c(fun_args, dots)
out <- do.call("standard_error.default", fun_args)
return(out)
}
# kenward approx
if (method %in% c("kenward", "kr")) {
out <- se_kenward(model)
return(out)
} else {
# Classic and Satterthwaite SE
out <- se_mixed_default(model)
return(out)
}
}
# helpers --------------
.standard_errors_random <- function(model) {
insight::check_if_installed("lme4")
rand.se <- lme4::ranef(model, condVar = TRUE)
n.groupings <- length(rand.se)
for (m in 1:n.groupings) {
vars.m <- attr(rand.se[[m]], "postVar")
K <- dim(vars.m)[1]
J <- dim(vars.m)[3]
names.full <- dimnames(rand.se[[m]])
rand.se[[m]] <- array(NA, c(J, K))
for (j in 1:J) {
rand.se[[m]][j, ] <- sqrt(diag(as.matrix(vars.m[, , j])))
}
dimnames(rand.se[[m]]) <- list(names.full[[1]], names.full[[2]])
}
rand.se
}
se_mixed_default <- function(model) {
params <- insight::find_parameters(model,
effects = "fixed",
component = "conditional",
flatten = TRUE
)
.data_frame(Parameter = params, SE = .get_se_from_summary(model))
}
#' @export
p_value.merMod <- p_value.cpglmm
|