File: methods_mice.R

package info (click to toggle)
r-cran-parameters 0.24.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,852 kB
  • sloc: sh: 16; makefile: 2
file content (182 lines) | stat: -rw-r--r-- 5,086 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# confidence intervals --------------------------

#' @export
ci.mipo <- ci.gam


#' @export
ci.mira <- function(x, ci = 0.95, ...) {
  insight::check_if_installed("mice")
  ci(mice::pool(x), ci = ci, ...)
}


# p values ---------------------------------------

#' @export
p_value.mipo <- function(model, ...) {
  s <- summary(model)
  out <- .data_frame(
    Parameter = as.vector(s$term),
    p = as.vector(s$p.value)
  )
  # check for ordinal-alike models
  if (!is.null(model$pooled) && "y.level" %in% colnames(model$pooled)) {
    out$Response <- as.vector(model$pooled$y.level)
  }
  out
}


#' @export
p_value.mira <- function(model, ...) {
  insight::check_if_installed("mice")
  p_value(mice::pool(model), ...)
}


# standard errors --------------------------------

#' @export
standard_error.mipo <- function(model, ...) {
  s <- summary(model)
  out <- .data_frame(
    Parameter = as.vector(s$term),
    SE = as.vector(s$std.error)
  )
  # check for ordinal-alike models
  if (!is.null(model$pooled) && "y.level" %in% colnames(model$pooled)) {
    out$Response <- as.vector(model$pooled$y.level)
  }
  out
}


#' @export
standard_error.mira <- function(model, ...) {
  insight::check_if_installed("mice")
  standard_error(mice::pool(model), ...)
}


# format -------------------------------------------

#' @export
format_parameters.mira <- format_parameters.rma


# model_parameters ---------------------------------

#' @export
model_parameters.mipo <- function(model,
                                  ci = 0.95,
                                  exponentiate = FALSE,
                                  p_adjust = NULL,
                                  keep = NULL,
                                  drop = NULL,
                                  verbose = TRUE,
                                  ...) {
  # validation check, warn if unsupported argument is used.
  dot_args <- .check_dots(
    dots = list(...),
    not_allowed = c("vcov", "vcov_args"),
    class(model)[1],
    verbose = verbose
  )

  # check if we have ordinal/categorical response
  if (!is.null(model$pooled) && "y.level" %in% colnames(model$pooled)) {
    merge_by <- c("Parameter", "Response")
  } else {
    merge_by <- "Parameter"
  }

  fun_args <- list(
    model,
    ci = ci,
    merge_by = merge_by,
    exponentiate = exponentiate,
    p_adjust = p_adjust,
    keep_parameters = keep,
    drop_parameters = drop,
    vcov = NULL,
    vcov_args = NULL
  )
  fun_args <- c(fun_args, dot_args)

  out <- do.call(".model_parameters_generic", fun_args)
  attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(model))
  out
}


#' Parameters from multiply imputed repeated analyses
#'
#' Format models of class `mira`, obtained from `mice::width.mids()`, or of
#' class `mipo`.
#'
#' @param model An object of class `mira` or `mipo`.
#' @inheritParams model_parameters.default
#' @param ... Arguments passed to or from other methods.
#'
#' @details `model_parameters()` for objects of class `mira` works
#'   similar to `summary(mice::pool())`, i.e. it generates the pooled summary
#'   of multiple imputed repeated regression analyses.
#'
#' @examplesIf require("mice", quietly = TRUE) && require("gee", quietly = TRUE)
#' library(parameters)
#' data(nhanes2, package = "mice")
#' imp <- mice::mice(nhanes2)
#' fit <- with(data = imp, exp = lm(bmi ~ age + hyp + chl))
#' model_parameters(fit)
#' \donttest{
#' # model_parameters() also works for models that have no "tidy"-method in mice
#' data(warpbreaks)
#' set.seed(1234)
#' warpbreaks$tension[sample(1:nrow(warpbreaks), size = 10)] <- NA
#' imp <- mice::mice(warpbreaks)
#' fit <- with(data = imp, expr = gee::gee(breaks ~ tension, id = wool))
#'
#' # does not work:
#' # summary(mice::pool(fit))
#'
#' model_parameters(fit)
#' }
#'
#' # and it works with pooled results
#' data("nhanes2", package = "mice")
#' imp <- mice::mice(nhanes2)
#' fit <- with(data = imp, exp = lm(bmi ~ age + hyp + chl))
#' pooled <- mice::pool(fit)
#'
#' model_parameters(pooled)
#' @export
model_parameters.mira <- function(model,
                                  ci = 0.95,
                                  exponentiate = FALSE,
                                  p_adjust = NULL,
                                  keep = NULL,
                                  drop = NULL,
                                  verbose = TRUE,
                                  ...) {
  insight::check_if_installed("mice")
  micemodel <- suppressWarnings(mice::pool(model))

  out <- .model_parameters_generic(
    model = micemodel,
    ci = ci,
    bootstrap = FALSE,
    iterations = 10,
    merge_by = "Parameter",
    standardize = NULL,
    exponentiate = exponentiate,
    p_adjust = p_adjust,
    keep_parameters = keep,
    drop_parameters = drop,
    verbose = verbose,
    ...
  )

  attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(model))
  out
}