1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
# confidence intervals --------------------------
#' @export
ci.mipo <- ci.gam
#' @export
ci.mira <- function(x, ci = 0.95, ...) {
insight::check_if_installed("mice")
ci(mice::pool(x), ci = ci, ...)
}
# p values ---------------------------------------
#' @export
p_value.mipo <- function(model, ...) {
s <- summary(model)
out <- .data_frame(
Parameter = as.vector(s$term),
p = as.vector(s$p.value)
)
# check for ordinal-alike models
if (!is.null(model$pooled) && "y.level" %in% colnames(model$pooled)) {
out$Response <- as.vector(model$pooled$y.level)
}
out
}
#' @export
p_value.mira <- function(model, ...) {
insight::check_if_installed("mice")
p_value(mice::pool(model), ...)
}
# standard errors --------------------------------
#' @export
standard_error.mipo <- function(model, ...) {
s <- summary(model)
out <- .data_frame(
Parameter = as.vector(s$term),
SE = as.vector(s$std.error)
)
# check for ordinal-alike models
if (!is.null(model$pooled) && "y.level" %in% colnames(model$pooled)) {
out$Response <- as.vector(model$pooled$y.level)
}
out
}
#' @export
standard_error.mira <- function(model, ...) {
insight::check_if_installed("mice")
standard_error(mice::pool(model), ...)
}
# format -------------------------------------------
#' @export
format_parameters.mira <- format_parameters.rma
# model_parameters ---------------------------------
#' @export
model_parameters.mipo <- function(model,
ci = 0.95,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...) {
# validation check, warn if unsupported argument is used.
dot_args <- .check_dots(
dots = list(...),
not_allowed = c("vcov", "vcov_args"),
class(model)[1],
verbose = verbose
)
# check if we have ordinal/categorical response
if (!is.null(model$pooled) && "y.level" %in% colnames(model$pooled)) {
merge_by <- c("Parameter", "Response")
} else {
merge_by <- "Parameter"
}
fun_args <- list(
model,
ci = ci,
merge_by = merge_by,
exponentiate = exponentiate,
p_adjust = p_adjust,
keep_parameters = keep,
drop_parameters = drop,
vcov = NULL,
vcov_args = NULL
)
fun_args <- c(fun_args, dot_args)
out <- do.call(".model_parameters_generic", fun_args)
attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(model))
out
}
#' Parameters from multiply imputed repeated analyses
#'
#' Format models of class `mira`, obtained from `mice::width.mids()`, or of
#' class `mipo`.
#'
#' @param model An object of class `mira` or `mipo`.
#' @inheritParams model_parameters.default
#' @param ... Arguments passed to or from other methods.
#'
#' @details `model_parameters()` for objects of class `mira` works
#' similar to `summary(mice::pool())`, i.e. it generates the pooled summary
#' of multiple imputed repeated regression analyses.
#'
#' @examplesIf require("mice", quietly = TRUE) && require("gee", quietly = TRUE)
#' library(parameters)
#' data(nhanes2, package = "mice")
#' imp <- mice::mice(nhanes2)
#' fit <- with(data = imp, exp = lm(bmi ~ age + hyp + chl))
#' model_parameters(fit)
#' \donttest{
#' # model_parameters() also works for models that have no "tidy"-method in mice
#' data(warpbreaks)
#' set.seed(1234)
#' warpbreaks$tension[sample(1:nrow(warpbreaks), size = 10)] <- NA
#' imp <- mice::mice(warpbreaks)
#' fit <- with(data = imp, expr = gee::gee(breaks ~ tension, id = wool))
#'
#' # does not work:
#' # summary(mice::pool(fit))
#'
#' model_parameters(fit)
#' }
#'
#' # and it works with pooled results
#' data("nhanes2", package = "mice")
#' imp <- mice::mice(nhanes2)
#' fit <- with(data = imp, exp = lm(bmi ~ age + hyp + chl))
#' pooled <- mice::pool(fit)
#'
#' model_parameters(pooled)
#' @export
model_parameters.mira <- function(model,
ci = 0.95,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...) {
insight::check_if_installed("mice")
micemodel <- suppressWarnings(mice::pool(model))
out <- .model_parameters_generic(
model = micemodel,
ci = ci,
bootstrap = FALSE,
iterations = 10,
merge_by = "Parameter",
standardize = NULL,
exponentiate = exponentiate,
p_adjust = p_adjust,
keep_parameters = keep,
drop_parameters = drop,
verbose = verbose,
...
)
attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(model))
out
}
|