File: methods_mlm.R

package info (click to toggle)
r-cran-parameters 0.24.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,852 kB
  • sloc: sh: 16; makefile: 2
file content (232 lines) | stat: -rw-r--r-- 7,614 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# classes: .mlm

#################### .mlm


#' Parameters from multinomial or cumulative link models
#'
#' Parameters from multinomial or cumulative link models
#'
#' @param model A model with multinomial or categorical response value.
#' @inheritParams model_parameters.default
#' @inheritParams simulate_model
#'
#' @details Multinomial or cumulative link models, i.e. models where the
#'   response value (dependent variable) is categorical and has more than two
#'   levels, usually return coefficients for each response level. Hence, the
#'   output from `model_parameters()` will split the coefficient tables
#'   by the different levels of the model's response.
#'
#' @seealso [insight::standardize_names()] to rename
#'   columns into a consistent, standardized naming scheme.
#'
#' @inheritSection model_parameters.zcpglm Model components
#'
#' @examplesIf require("brglm2", quietly = TRUE)
#' data("stemcell", package = "brglm2")
#' model <- brglm2::bracl(
#'   research ~ as.numeric(religion) + gender,
#'   weights = frequency,
#'   data = stemcell,
#'   type = "ML"
#' )
#' model_parameters(model)
#' @return A data frame of indices related to the model's parameters.
#' @inheritParams simulate_model
#' @export
model_parameters.mlm <- function(model,
                                 ci = 0.95,
                                 vcov = NULL,
                                 vcov_args = NULL,
                                 bootstrap = FALSE,
                                 iterations = 1000,
                                 standardize = NULL,
                                 exponentiate = FALSE,
                                 p_adjust = NULL,
                                 keep = NULL,
                                 drop = NULL,
                                 verbose = TRUE,
                                 ...) {
  out <- .model_parameters_generic(
    model = model,
    ci = ci,
    vcov = vcov,
    vcov_args = vcov_args,
    bootstrap = bootstrap,
    iterations = iterations,
    merge_by = c("Parameter", "Response"),
    standardize = standardize,
    exponentiate = exponentiate,
    p_adjust = p_adjust,
    keep_parameters = keep,
    drop_parameters = drop,
    ...
  )
  attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(model))
  out
}


#' @export
standard_error.mlm <- function(model,
                               vcov = NULL,
                               vcov_args = NULL,
                               ...) {
  se <- standard_error.default(model, vcov = vcov, vcov_args = vcov_args, ...)
  est <- insight::get_parameters(model, ...)
  # assumes se and est are sorted the same way
  if (isTRUE(nrow(se) == nrow(est)) && "Parameter" %in% colnames(est) && "Response" %in% colnames(est)) {
    se$Parameter <- est$Parameter
    se$Response <- est$Response
    return(se)
  } else {
    # manually
    if (!is.null(vcov)) {
      insight::format_warning(
        "Unable to extract the variance-covariance matrix requested in `vcov`."
      )
    }
    cs <- stats::coef(summary(model))
    se <- lapply(names(cs), function(x) {
      params <- cs[[x]]
      .data_frame(
        Parameter = rownames(params),
        SE = params[, "Std. Error"],
        Response = gsub("^Response (.*)", "\\1", x)
      )
    })
    se <- insight::text_remove_backticks(do.call(rbind, se), verbose = FALSE)
    return(se)
  }
}


#' @export
p_value.mlm <- function(model, vcov = NULL, vcov_args = NULL, ...) {
  out <- p_value.default(model, vcov = vcov, vcov_args = vcov_args, ...)
  est <- insight::get_parameters(model, ...)
  # assumes out and est are sorted the same way
  if (isTRUE(nrow(out) == nrow(est)) && "Parameter" %in% colnames(est) && "Response" %in% colnames(est)) {
    out$Parameter <- est$Parameter
    out$Response <- est$Response

    # manually
  } else {
    if (!is.null(vcov)) {
      insight::format_warning(
        "Unable to extract the variance-covariance matrix requested in `vcov`."
      )
    }
    cs <- stats::coef(summary(model))
    p <- lapply(names(cs), function(x) {
      params <- cs[[x]]
      .data_frame(
        Parameter = rownames(params),
        p = params[, "Pr(>|t|)"],
        Response = gsub("^Response (.*)", "\\1", x)
      )
    })
    out <- insight::text_remove_backticks(do.call(rbind, p), verbose = FALSE)
  }

  return(out)
}


#' @export
ci.mlm <- function(x,
                   vcov = NULL,
                   vcov_args = NULL,
                   ci = 0.95, ...) {
  # .ci_generic may not handle weights properly (not sure)
  if (is.null(insight::find_weights(x)) && is.null(vcov)) {
    out <- lapply(ci, function(i) {
      .ci <- stats::confint(x, level = i, ...)
      rn <- rownames(.ci)
      .data_frame(
        Parameter = gsub("([^\\:]+)(\\:)(.*)", "\\3", rn),
        CI = i,
        CI_low = .ci[, 1],
        CI_high = .ci[, 2],
        Response = gsub("([^\\:]+)(\\:)(.*)", "\\1", rn)
      )
    })
    out <- insight::text_remove_backticks(do.call(rbind, out), verbose = FALSE)

    # .ci_generic does handle `vcov` correctly.
  } else {
    out <- .data_frame(
      .ci_generic(
        x,
        ci = ci,
        vcov = vcov,
        vcov_args = vcov_args,
        ...
      )
    )

    resp <- insight::get_parameters(x)$Response
    if (!"Response" %in% colnames(out) && nrow(out) == length(resp)) {
      out[["Response"]] <- resp
    } else if (!isTRUE(all(out$Response == resp))) {
      insight::format_error(
        "Unable to assign labels to the model's parameters.",
        "Please report this problem to the {.pkg parameters} issue tracker:",
        "{.url https://github.com/easystats/parameters/issues}"
      )
    }
  }
  out
}


#' @export
simulate_model.mlm <- function(model, iterations = 1000, ...) {
  responses <- insight::find_response(model, combine = FALSE)
  out <- .simulate_model(model, iterations, component = "conditional", effects = "fixed", ...)

  cn <- paste0(colnames(out), rep(responses, each = length(colnames(out)) / length(responses)))
  colnames(out) <- cn

  class(out) <- c("parameters_simulate_model", class(out))
  attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(model))
  out
}


#' @export
simulate_parameters.mlm <- function(model,
                                    iterations = 1000,
                                    centrality = "median",
                                    ci = 0.95,
                                    ci_method = "quantile",
                                    test = "p-value",
                                    ...) {
  sim_data <- simulate_model(model, iterations = iterations, ...)
  out <-
    .summary_bootstrap(
      data = sim_data,
      test = test,
      centrality = centrality,
      ci = ci,
      ci_method = ci_method,
      ...
    )

  out$Response <- NA
  responses <- insight::find_response(model, combine = FALSE)
  for (i in responses) {
    out$Response[grepl(paste0(i, "$"), out$Parameter)] <- i
    out$Parameter <- gsub(paste0(i, "$"), "", out$Parameter)
  }

  class(out) <- c("parameters_simulate", "see_parameters_simulate", class(out))
  attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(model))
  attr(out, "object_class") <- class(model)
  attr(out, "iterations") <- iterations
  attr(out, "ci") <- ci
  attr(out, "ci_method") <- ci_method
  attr(out, "centrality") <- centrality

  out
}