File: methods_model_fit.R

package info (click to toggle)
r-cran-parameters 0.24.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,852 kB
  • sloc: sh: 16; makefile: 2
file content (69 lines) | stat: -rw-r--r-- 1,713 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
## tidymodels (.model_fit)

# model parameters ---------------------


#' @export
model_parameters.model_fit <- function(model,
                                       ci = 0.95,
                                       effects = "fixed",
                                       component = "conditional",
                                       ci_method = "profile",
                                       bootstrap = FALSE,
                                       iterations = 1000,
                                       standardize = NULL,
                                       exponentiate = FALSE,
                                       p_adjust = NULL,
                                       verbose = TRUE,
                                       ...) {
  model_parameters(
    model$fit,
    ci = ci,
    effects = effects,
    component = component,
    ci_method = ci_method,
    bootstrap = bootstrap,
    iterations = iterations,
    standardize = standardize,
    exponentiate = exponentiate,
    p_adjust = p_adjust,
    verbose = verbose,
    ...
  )
}


# ci ------------------


#' @export
ci.model_fit <- function(x, ci = 0.95, method = NULL, ...) {
  ci(x$fit, ci = ci, method = method, ...)
}


# standard error ------------------


#' @export
standard_error.model_fit <- function(model, ...) {
  standard_error(model$fit, ...)
}


# p values ------------------


#' @export
p_value.model_fit <- function(model, ...) {
  p_value(model$fit, ...)
}


# simulate model ------------------


#' @export
simulate_model.model_fit <- function(model, iterations = 1000, ...) {
  simulate_model(model$fit, iterations = iterations, ...)
}