File: methods_nestedLogit.R

package info (click to toggle)
r-cran-parameters 0.24.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,852 kB
  • sloc: sh: 16; makefile: 2
file content (282 lines) | stat: -rw-r--r-- 8,747 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#' @export
model_parameters.nestedLogit <- function(model,
                                         ci = 0.95,
                                         ci_method = NULL,
                                         component = "all",
                                         bootstrap = FALSE,
                                         iterations = 1000,
                                         standardize = NULL,
                                         exponentiate = FALSE,
                                         p_adjust = NULL,
                                         vcov = NULL,
                                         vcov_args = NULL,
                                         include_info = getOption("parameters_info", FALSE),
                                         keep = NULL,
                                         drop = NULL,
                                         verbose = TRUE,
                                         ...) {
  dots <- list(...)

  # set default
  if (is.null(ci_method)) {
    if (isTRUE(bootstrap)) {
      ci_method <- "quantile"
    } else if (!is.null(vcov) || !is.null(vcov_args)) {
      ci_method <- "wald"
    } else {
      ci_method <- "profile"
    }
  }

  # "component" might be set to "conditional", when called from "compare_parameters()"
  # set to "all" here.
  if (identical(component, "conditional")) {
    component <- "all"
  }

  # profiled CIs may take a long time to compute, so we warn the user about it
  if (any(unlist(insight::n_obs(model)) > 1e4) && identical(ci_method, "profile")) {
    insight::format_alert(
      "Profiled confidence intervals may take longer time to compute.",
      "Use `ci_method=\"wald\"` for faster computation of CIs."
    )
  }

  # tell user that profiled CIs don't respect vcov-args
  if (identical(ci_method, "profile") && (!is.null(vcov) || !is.null(vcov_args)) && isTRUE(verbose)) {
    insight::format_alert(
      "When `ci_method=\"profile\"`, `vcov` only modifies standard errors, test-statistic and p-values, but not confidence intervals.", # nolint
      "Use `ci_method=\"wald\"` to return confidence intervals based on robust standard errors."
    )
  }

  fun_args <- list(
    model = model,
    ci = ci,
    ci_method = ci_method,
    component = component,
    bootstrap = bootstrap,
    iterations = iterations,
    merge_by = c("Parameter", "Response", "Component"),
    standardize = standardize,
    exponentiate = exponentiate,
    p_adjust = p_adjust,
    include_info = include_info,
    keep_parameters = keep,
    drop_parameters = drop,
    vcov = vcov,
    vcov_args = vcov_args
  )
  fun_args <- c(fun_args, dots)
  out <- do.call(".model_parameters_generic", fun_args)

  attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(model))
  out
}


#' @export
standard_error.nestedLogit <- function(model,
                                       component = "all",
                                       vcov = NULL,
                                       vcov_args = NULL,
                                       verbose = TRUE,
                                       ...) {
  dots <- list(...)
  se <- NULL

  # vcov: matrix
  if (is.matrix(vcov)) {
    se <- sqrt(diag(vcov))
  }

  # vcov: function which returns a matrix
  if (is.function(vcov)) {
    fun_args <- c(list(model), vcov_args, dots)
    se <- .safe(sqrt(diag(do.call("vcov", fun_args))))
  }

  # vcov: character
  if (is.character(vcov)) {
    .vcov <- insight::get_varcov(
      model,
      component = component,
      vcov = vcov,
      vcov_args = vcov_args,
      verbose = verbose,
      ...
    )
    se <- unlist(lapply(.vcov, function(i) sqrt(diag(i))), use.names = FALSE)
  }

  # classical se from summary()
  if (is.null(se)) {
    se <- as.vector(as.data.frame(do.call(rbind, lapply(model$models, function(i) {
      stats::coef(summary(i))
    })))[, "Std. Error"])
  }

  # classical se from get_varcov()
  if (is.null(se)) {
    .vcov <- insight::get_varcov(
      model,
      component = component,
      verbose = verbose,
      ...
    )
    se <- unlist(lapply(.vcov, function(i) sqrt(diag(i))), use.names = FALSE)
  }

  params <- insight::get_parameters(model, component = component)
  .data_frame(
    Parameter = params$Parameter,
    SE = as.vector(se),
    Response = params$Response,
    Component = params$Component
  )
}


#' @export
p_value.nestedLogit <- function(model,
                                dof = NULL,
                                method = NULL,
                                component = "all",
                                vcov = NULL,
                                vcov_args = NULL,
                                verbose = TRUE,
                                ...) {
  if (is.null(vcov)) {
    p <- as.vector(as.data.frame(do.call(rbind, lapply(model$models, function(i) {
      stats::coef(summary(i))
    })))[, "Pr(>|z|)"])
  } else {
    p <- p_value.default(
      model,
      dof = dof,
      method = method,
      component = component,
      vcov = vcov,
      vcov_args = vcov_args,
      verbose = verbose,
      ...
    )[["p"]]
  }

  params <- insight::get_parameters(model, component = component)
  .data_frame(
    Parameter = params$Parameter,
    p = p,
    Response = params$Response,
    Component = params$Component
  )
}


#' @export
ci.nestedLogit <- function(x,
                           ci = 0.95,
                           dof = NULL,
                           method = "profile",
                           component = "all",
                           vcov = NULL,
                           vcov_args = NULL,
                           verbose = TRUE,
                           ...) {
  out <- lapply(
    x$models,
    ci,
    dof = dof,
    method = method,
    vcov = vcov,
    vcov_args = vcov_args,
    verbose = verbose,
    ...
  )

  for (i in names(out)) {
    out[[i]]$Component <- i
  }

  out <- do.call(rbind, out)
  row.names(out) <- NULL

  if (!is.null(component) && !identical(component, "all")) {
    comp <- intersect(names(x$models), component)
    if (!length(comp) && verbose) {
      insight::format_alert(
        paste0(
          "No matching model found. Possible values for `component` are ",
          toString(paste0("\"", names(x$models), "\"")),
          "."
        )
      )
    } else {
      out <- out[out$Component %in% component, ]
    }
  }

  params <- insight::get_parameters(x, component = component)
  out$Response <- params$Response
  out[c("Parameter", "CI", "CI_low", "CI_high", "Response", "Component")]
}


#' @export
simulate_model.nestedLogit <- function(model, iterations = 1000, ...) {
  if (is.null(iterations)) iterations <- 1000

  params <- insight::get_parameters(model, component = "all", verbose = FALSE)
  varcov <- insight::get_varcov(model, component = "all", verbose = FALSE, ...)

  out <- lapply(unique(params$Component), function(i) {
    pars <- params[params$Component == i, ]
    betas <- stats::setNames(pars$Estimate, pars$Parameter)
    d <- as.data.frame(.mvrnorm(n = iterations, mu = betas, Sigma = varcov[[i]]))
    d$Component <- i
    d
  })

  out <- do.call(rbind, out)

  class(out) <- c("parameters_simulate_model", class(out))
  attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(model))
  out
}


#' @export
simulate_parameters.nestedLogit <- function(model,
                                            iterations = 1000,
                                            centrality = "median",
                                            ci = 0.95,
                                            ci_method = "quantile",
                                            test = "p-value",
                                            ...) {
  sim_data <- simulate_model(model, iterations = iterations, ...)

  out <- lapply(unique(sim_data$Component), function(i) {
    pars <- sim_data[sim_data$Component == i, ]
    d <- .summary_bootstrap(
      data = pars,
      test = test,
      centrality = centrality,
      ci = ci,
      ci_method = ci_method,
      ...
    )
    d$Component <- i
    d
  })
  out <- do.call(rbind, out)

  class(out) <- c("parameters_simulate", "see_parameters_simulate", class(out))
  attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(model))
  attr(out, "iterations") <- iterations
  attr(out, "ci") <- ci
  attr(out, "ci_method") <- ci_method
  attr(out, "centrality") <- centrality
  attr(out, "simulated") <- TRUE

  out
}