1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
# model parameters -------------------
#' @export
model_parameters.clm2 <- function(model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = "all",
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
include_info = getOption("parameters_info", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
...) {
component <- insight::validate_argument(component, c("all", "conditional", "scale"))
if (component == "all") {
merge_by <- c("Parameter", "Component")
} else {
merge_by <- "Parameter"
}
## TODO check merge by
out <- .model_parameters_generic(
model = model,
ci = ci,
component = component,
bootstrap = bootstrap,
iterations = iterations,
merge_by = c("Parameter", "Component"),
standardize = standardize,
exponentiate = exponentiate,
p_adjust = p_adjust,
keep_parameters = keep,
drop_parameters = drop,
include_info = include_info,
...
)
attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(model))
out
}
#' @export
model_parameters.clmm2 <- model_parameters.clm2
#' @export
model_parameters.clmm <- model_parameters.cpglmm
# CI ---------------------
## TODO residual df?
#' @export
ci.clm2 <- function(x, ci = 0.95, component = c("all", "conditional", "scale"), ...) {
component <- match.arg(component)
.ci_generic(model = x, ci = ci, dof = Inf, component = component)
}
#' @export
ci.clmm2 <- ci.clm2
# standard errors -----------------
#' @export
standard_error.clm2 <- function(model, component = "all", ...) {
component <- match.arg(component, choices = c("all", "conditional", "scale"))
stats <- .get_se_from_summary(model)
parms <- insight::get_parameters(model, component = component)
.data_frame(
Parameter = parms$Parameter,
SE = stats[parms$Parameter],
Component = parms$Component
)
}
#' @export
standard_error.clmm2 <- standard_error.clm2
# p values ----------------
#' @export
p_value.clm2 <- function(model, component = "all", ...) {
component <- insight::validate_argument(
component,
c("all", "conditional", "scale")
)
params <- insight::get_parameters(model)
cs <- stats::coef(summary(model))
p <- cs[, 4]
out <- .data_frame(
Parameter = params$Parameter,
Component = params$Component,
p = as.vector(p)
)
if (component != "all") {
out <- out[out$Component == component, ]
}
out
}
#' @export
p_value.clmm2 <- p_value.clm2
# simulate model -------------------
#' @export
simulate_model.clm2 <- function(model, iterations = 1000, component = "all", ...) {
component <- insight::validate_argument(
component,
c("all", "conditional", "scale")
)
out <- .simulate_model(model, iterations, component = component, ...)
class(out) <- c("parameters_simulate_model", class(out))
attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(model))
out
}
#' @export
simulate_model.clmm2 <- simulate_model.clm2
|