1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
#' Parameters from PCA, FA, CFA, SEM
#'
#' Format structural models from the **psych** or **FactoMineR** packages.
#'
#' @param standardize Return standardized parameters (standardized coefficients).
#' Can be `TRUE` (or `"all"` or `"std.all"`) for standardized
#' estimates based on both the variances of observed and latent variables;
#' `"latent"` (or `"std.lv"`) for standardized estimates based
#' on the variances of the latent variables only; or `"no_exogenous"`
#' (or `"std.nox"`) for standardized estimates based on both the
#' variances of observed and latent variables, but not the variances of
#' exogenous covariates. See `lavaan::standardizedsolution` for details.
#' @param labels A character vector containing labels to be added to the
#' loadings data. Usually, the question related to the item.
#' @param component What type of links to return. Can be `"all"` or some of
#' `c("regression", "correlation", "loading", "variance", "mean")`.
#' @param ... Arguments passed to or from other methods.
#' @inheritParams principal_components
#' @inheritParams model_parameters.default
#'
#' @note There is also a
#' [`plot()`-method](https://easystats.github.io/see/articles/parameters.html)
#' for `lavaan` models implemented in the
#' [**see**-package](https://easystats.github.io/see/).
#'
#' @details
#' For the structural models obtained with **psych**, the following indices
#' are present:
#'
#' - **Complexity** (\cite{Hoffman's, 1978; Pettersson and Turkheimer,
#' 2010}) represents the number of latent components needed to account for
#' the observed variables. Whereas a perfect simple structure solution has a
#' complexity of 1 in that each item would only load on one factor, a
#' solution with evenly distributed items has a complexity greater than 1.
#'
#' - **Uniqueness** represents the variance that is 'unique' to the
#' variable and not shared with other variables. It is equal to `1 –
#' communality` (variance that is shared with other variables). A uniqueness
#' of `0.20` suggests that `20%` or that variable's variance is not shared
#' with other variables in the overall factor model. The greater 'uniqueness'
#' the lower the relevance of the variable in the factor model.
#'
#' - **MSA** represents the Kaiser-Meyer-Olkin Measure of Sampling
#' Adequacy (\cite{Kaiser and Rice, 1974}) for each item. It indicates
#' whether there is enough data for each factor give reliable results for the
#' PCA. The value should be > 0.6, and desirable values are > 0.8
#' (\cite{Tabachnick and Fidell, 2013}).
#'
#' @examples
#' \donttest{
#' library(parameters)
#' if (require("psych", quietly = TRUE)) {
#' # Principal Component Analysis (PCA) ---------
#' pca <- psych::principal(attitude)
#' model_parameters(pca)
#'
#' pca <- psych::principal(attitude, nfactors = 3, rotate = "none")
#' model_parameters(pca, sort = TRUE, threshold = 0.2)
#'
#' principal_components(attitude, n = 3, sort = TRUE, threshold = 0.2)
#'
#'
#' # Exploratory Factor Analysis (EFA) ---------
#' efa <- psych::fa(attitude, nfactors = 3)
#' model_parameters(efa,
#' threshold = "max", sort = TRUE,
#' labels = as.character(1:ncol(attitude))
#' )
#'
#'
#' # Omega ---------
#' omega <- psych::omega(mtcars, nfactors = 3)
#' params <- model_parameters(omega)
#' params
#' summary(params)
#' }
#' }
#'
#' # lavaan
#'
#' library(parameters)
#'
#' # lavaan -------------------------------------
#' if (require("lavaan", quietly = TRUE)) {
#' # Confirmatory Factor Analysis (CFA) ---------
#'
#' structure <- " visual =~ x1 + x2 + x3
#' textual =~ x4 + x5 + x6
#' speed =~ x7 + x8 + x9 "
#' model <- lavaan::cfa(structure, data = HolzingerSwineford1939)
#' model_parameters(model)
#' model_parameters(model, standardize = TRUE)
#'
#' # filter parameters
#' model_parameters(
#' model,
#' parameters = list(
#' To = "^(?!visual)",
#' From = "^(?!(x7|x8))"
#' )
#' )
#'
#' # Structural Equation Model (SEM) ------------
#'
#' structure <- "
#' # latent variable definitions
#' ind60 =~ x1 + x2 + x3
#' dem60 =~ y1 + a*y2 + b*y3 + c*y4
#' dem65 =~ y5 + a*y6 + b*y7 + c*y8
#' # regressions
#' dem60 ~ ind60
#' dem65 ~ ind60 + dem60
#' # residual correlations
#' y1 ~~ y5
#' y2 ~~ y4 + y6
#' y3 ~~ y7
#' y4 ~~ y8
#' y6 ~~ y8
#' "
#' model <- lavaan::sem(structure, data = PoliticalDemocracy)
#' model_parameters(model)
#' model_parameters(model, standardize = TRUE)
#' }
#'
#' @return A data frame of indices or loadings.
#' @references
#' - Kaiser, H.F. and Rice. J. (1974). Little jiffy, mark iv. Educational and
#' Psychological Measurement, 34(1):111–117
#'
#' - Pettersson, E., and Turkheimer, E. (2010). Item selection, evaluation, and
#' simple structure in personality data. Journal of research in personality,
#' 44(4), 407-420.
#'
#' - Revelle, W. (2016). How To: Use the psych package for Factor Analysis and
#' data reduction.
#'
#' - Tabachnick, B. G., and Fidell, L. S. (2013). Using multivariate statistics
#' (6th ed.). Boston: Pearson Education.
#'
#' - Rosseel Y (2012). lavaan: An R Package for Structural Equation
#' Modeling. Journal of Statistical Software, 48(2), 1-36.
#'
#' - Merkle EC , Rosseel Y (2018). blavaan: Bayesian Structural Equation
#' Models via Parameter Expansion. Journal of Statistical Software, 85(4),
#' 1-30. http://www.jstatsoft.org/v85/i04/
#'
#' @export
model_parameters.principal <- function(model,
sort = FALSE,
threshold = NULL,
labels = NULL,
verbose = TRUE,
...) {
# n
n <- model$factors
# Get summary
variance <- as.data.frame(unclass(model$Vaccounted))
data_summary <- .data_frame(
Component = names(variance),
Eigenvalues = model$values[1:n],
Variance = as.numeric(variance["Proportion Var", ])
)
if ("Cumulative Var" %in% row.names(variance)) {
data_summary$Variance_Cumulative <- as.numeric(variance["Cumulative Var", ])
} else {
if (ncol(variance) == 1) {
data_summary$Variance_Cumulative <- as.numeric(variance["Proportion Var", ])
} else {
data_summary$Variance_Cumulative <- NA
}
}
data_summary$Variance_Proportion <- data_summary$Variance / sum(data_summary$Variance)
# Get loadings
loadings <- as.data.frame(unclass(model$loadings))
# Format
loadings <- cbind(data.frame(Variable = row.names(loadings)), loadings)
row.names(loadings) <- NULL
# Labels
if (!is.null(labels)) {
loadings$Label <- labels
loadings <- loadings[c("Variable", "Label", names(loadings)[!names(loadings) %in% c("Variable", "Label")])]
loading_cols <- 3:(n + 2)
} else {
loading_cols <- 2:(n + 1)
}
# Add information
loadings$Complexity <- model$complexity
loadings$Uniqueness <- model$uniquenesses
loadings$MSA <- attributes(model)$MSA
# Add attributes
attr(loadings, "summary") <- data_summary
attr(loadings, "model") <- model
attr(loadings, "rotation") <- model$rotation
attr(loadings, "scores") <- model$scores
attr(loadings, "additional_arguments") <- list(...)
attr(loadings, "n") <- n
attr(loadings, "type") <- model$fn
attr(loadings, "loadings_columns") <- loading_cols
# Sorting
if (isTRUE(sort)) {
loadings <- .sort_loadings(loadings)
}
# Replace by NA all cells below threshold
if (!is.null(threshold)) {
loadings <- .filter_loadings(loadings, threshold = threshold)
}
# Add some more attributes
attr(loadings, "loadings_long") <- .long_loadings(loadings, threshold = threshold, loadings_columns = loading_cols)
# here we match the original columns in the data set with the assigned components
# for each variable, so we know which column in the original data set belongs
# to which extracted component...
attr(loadings, "closest_component") <- .closest_component(
loadings,
loadings_columns = loading_cols,
variable_names = rownames(model$loadings)
)
# add class-attribute for printing
if (model$fn == "principal") {
class(loadings) <- unique(c("parameters_pca", "see_parameters_pca", class(loadings)))
} else {
class(loadings) <- unique(c("parameters_efa", "see_parameters_efa", class(loadings)))
}
loadings
}
#' @export
model_parameters.fa <- model_parameters.principal
#' @export
model_parameters.fa.ci <- model_parameters.fa
#' @export
model_parameters.omega <- function(model, verbose = TRUE, ...) {
# Table of omega coefficients
table_om <- model$omega.group
colnames(table_om) <- c("Omega_Total", "Omega_Hierarchical", "Omega_Group")
table_om$Composite <- row.names(table_om)
row.names(table_om) <- NULL
table_om <- table_om[c("Composite", names(table_om)[names(table_om) != "Composite"])]
# Get summary: Table of Variance
table_var <- as.data.frame(unclass(model$omega.group))
table_var$Composite <- rownames(model$omega.group)
table_var$Total <- table_var$total * 100
table_var$General <- table_var$general * 100
table_var$Group <- table_var$group * 100
table_var <- table_var[c("Composite", "Total", "General", "Group")]
out <- table_om
attr(out, "summary") <- table_var
class(out) <- c("parameters_omega", class(out))
out
}
|