1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
#' @export
model_parameters.stanreg <- function(model,
centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = "pd",
rope_range = "default",
rope_ci = 0.95,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
priors = TRUE,
effects = "fixed",
exponentiate = FALSE,
standardize = NULL,
group_level = FALSE,
keep = NULL,
drop = NULL,
verbose = TRUE,
...) {
# for coef(), we don't need all the attributes and just stop here
if (effects %in% c("total", "random_total")) {
params <- .group_level_total(model)
params$Effects <- "total"
class(params) <- c("parameters_coef", "see_parameters_coef", class(params))
return(params)
}
# Processing
params <- .extract_parameters_bayesian(
model,
centrality = centrality,
dispersion = dispersion,
ci = ci,
ci_method = ci_method,
test = test,
rope_range = rope_range,
rope_ci = rope_ci,
bf_prior = bf_prior,
diagnostic = diagnostic,
priors = priors,
effects = effects,
standardize = standardize,
keep_parameters = keep,
drop_parameters = drop,
verbose = verbose,
...
)
if (effects != "fixed") {
random_effect_levels <- which(
params$Effects == "random" & !startsWith(params$Parameter, "Sigma[")
)
if (length(random_effect_levels) && isFALSE(group_level)) {
params <- params[-random_effect_levels, , drop = FALSE]
}
}
## TODO: can we use the regular pretty-name-formatting?
params <- .add_pretty_names(params, model)
# exponentiate coefficients and SE/CI, if requested
params <- .exponentiate_parameters(params, model, exponentiate)
params <- .add_model_parameters_attributes(
params,
model,
ci,
exponentiate,
ci_method = ci_method,
group_level = group_level,
verbose = verbose,
...
)
attr(params, "parameter_info") <- insight::clean_parameters(model)
attr(params, "object_name") <- insight::safe_deparse_symbol(substitute(model))
class(params) <- c("parameters_model", "see_parameters_model", class(params))
params
}
#' @export
model_parameters.stanmvreg <- function(model,
centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = "pd",
rope_range = "default",
rope_ci = 0.95,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
priors = TRUE,
effects = "fixed",
standardize = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...) {
# Processing
params <- .extract_parameters_bayesian(
model,
centrality = centrality,
dispersion = dispersion,
ci = ci,
ci_method = ci_method,
test = test,
rope_range = rope_range,
rope_ci = rope_ci,
bf_prior = bf_prior,
diagnostic = diagnostic,
priors = priors,
effects = effects,
standardize = standardize,
keep_parameters = keep,
drop_parameters = drop,
verbose = verbose,
...
)
params$Parameter <- gsub("^(.*)\\|(.*)", "\\2", params$Parameter)
params <- .add_pretty_names(params, model)
attr(params, "ci") <- ci
attr(params, "object_name") <- insight::safe_deparse_symbol(substitute(model))
class(params) <- c("parameters_model", "see_parameters_model", class(params))
params
}
#' @export
standard_error.stanreg <- standard_error.brmsfit
#' @export
standard_error.mvstanreg <- standard_error.brmsfit
#' @export
p_value.stanreg <- p_value.BFBayesFactor
|