File: methods_survey.R

package info (click to toggle)
r-cran-parameters 0.24.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,852 kB
  • sloc: sh: 16; makefile: 2
file content (179 lines) | stat: -rw-r--r-- 4,736 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# model_parameters -----------------------------------------

#' @export
model_parameters.svyglm <- function(model,
                                    ci = 0.95,
                                    ci_method = "wald",
                                    standardize = NULL,
                                    exponentiate = FALSE,
                                    p_adjust = NULL,
                                    include_info = getOption("parameters_info", FALSE),
                                    keep = NULL,
                                    drop = NULL,
                                    verbose = TRUE,
                                    ...) {
  if (insight::n_obs(model) > 1e4 && ci_method == "likelihood") {
    insight::format_alert(
      "Likelihood confidence intervals may take longer time to compute. Use 'ci_method=\"wald\"' for faster computation of CIs." # nolint
    )
  }

  # validation check, warn if unsupported argument is used.
  dot_args <- .check_dots(
    dots = list(...),
    not_allowed = c("vcov", "vcov_args", "bootstrap"),
    class(model)[1],
    verbose = verbose
  )

  fun_args <- list(
    model,
    ci = ci,
    ci_method = ci_method,
    standardize = standardize,
    exponentiate = exponentiate,
    p_adjust = p_adjust,
    keep_parameters = keep,
    drop_parameters = drop,
    include_info = include_info,
    verbose = verbose
  )
  fun_args <- c(fun_args, dot_args)
  out <- do.call(".model_parameters_generic", fun_args)

  attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(model))
  out
}


# simulate_model -----------------------------------------

#' @export
simulate_model.svyglm.nb <- simulate_model.default


#' @export
simulate_model.svyglm.zip <- simulate_model.default


# standard erors -----------------------------------------

#' @export
standard_error.svyglm.nb <- function(model, ...) {
  if (!isNamespaceLoaded("survey")) {
    requireNamespace("survey", quietly = TRUE)
  }
  se <- sqrt(diag(stats::vcov(model, stderr = "robust")))
  .data_frame(
    Parameter = .remove_backticks_from_string(names(se)),
    SE = as.vector(se)
  )
}


#' @export
standard_error.svyglm.zip <- standard_error.svyglm.nb


#' @export
standard_error.svyglm <- function(model, ...) {
  vc <- insight::get_varcov(model)
  .data_frame(
    Parameter = .remove_backticks_from_string(row.names(vc)),
    SE = as.vector(sqrt(diag(vc)))
  )
}


#' @export
standard_error.svyolr <- standard_error.svyglm


# confidence intervals -----------------------------------

#' @export
ci.svyglm <- function(x, ci = 0.95, method = "wald", ...) {
  method <- match.arg(method, choices = c("wald", "residual", "normal", "likelihood"))
  if (method == "likelihood") {
    out <- lapply(ci, function(i) .ci_likelihood(model = x, ci = i))
    out <- do.call(rbind, out)
  } else {
    out <- .ci_generic(model = x, ci = ci, method = method, ...)
  }

  row.names(out) <- NULL
  out
}

#' @export
ci.svyolr <- ci.svyglm


# p values -----------------------------------------------

## TODO how to calculate p when ci-method is "likelihood"?

#' @export
p_value.svyglm <- function(model, verbose = TRUE, ...) {
  statistic <- insight::get_statistic(model)
  dof <- insight::get_df(model, type = "residual")
  p <- 2 * stats::pt(-abs(statistic$Statistic), df = dof)
  .data_frame(
    Parameter = statistic$Parameter,
    p = as.vector(p)
  )
}


#' @export
p_value.svyolr <- p_value.svyglm


#' @export
p_value.svyglm.nb <- function(model, ...) {
  if (!isNamespaceLoaded("survey")) {
    requireNamespace("survey", quietly = TRUE)
  }

  est <- stats::coef(model)
  se <- sqrt(diag(stats::vcov(model, stderr = "robust")))
  p <- 2 * stats::pt(abs(est / se), df = insight::get_df(model, type = "wald"), lower.tail = FALSE)

  .data_frame(
    Parameter = .remove_backticks_from_string(names(p)),
    p = as.vector(p)
  )
}


#' @export
p_value.svyglm.zip <- p_value.svyglm.nb


# helper --------------------

.ci_likelihood <- function(model, ci) {
  glm_ci <- tryCatch(
    {
      out <- as.data.frame(stats::confint(model, level = ci, method = "likelihood"), stringsAsFactors = FALSE)
      names(out) <- c("CI_low", "CI_high")

      out$CI <- ci
      out$Parameter <- insight::get_parameters(model, effects = "fixed", component = "conditional")$Parameter

      out <- out[c("Parameter", "CI", "CI_low", "CI_high")]
      rownames(out) <- NULL

      out
    },
    error = function(e) {
      NULL
    }
  )

  if (is.null(glm_ci)) {
    glm_ci <- .ci_generic(model, ci = ci)
  }

  glm_ci
}