File: methods_survival.R

package info (click to toggle)
r-cran-parameters 0.24.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,852 kB
  • sloc: sh: 16; makefile: 2
file content (181 lines) | stat: -rw-r--r-- 4,535 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# classes: .coxph, .aareg, .survreg, .riskRegression, .survfit

#################### .survfit ------

#' @export
model_parameters.survfit <- function(model,
                                     keep = NULL,
                                     drop = NULL,
                                     verbose = TRUE,
                                     ...) {
  s <- summary(model)
  # extract all elements with same length, which occur most in that list
  # that is the data we need
  uniqv <- unique(lengths(s))
  tab <- tabulate(match(lengths(s), uniqv))
  idx <- which.max(tab)
  most_len <- uniqv[idx]

  # convert list into data frame, only for elements of same length
  params <- as.data.frame(s[lengths(s) == most_len])

  # keep specific columns
  keep_columns <- intersect(
    c("time", "n.risk", "n.event", "surv", "std.err", "strata", "lower", "upper"),
    colnames(params)
  )
  params <- params[keep_columns]

  # rename
  params <- datawizard::data_rename(
    params,
    select = c(
      Time = "time", `N Risk` = "n.risk", `N Event` = "n.event", Survival = "surv",
      SE = "std.err", Group = "strata", CI_low = "lower", CI_high = "upper"
    )
  )

  # fix labels
  params$Group <- gsub("x=", "", params$Group, fixed = TRUE)

  # These are integers, need to be character to display without decimals
  params$Time <- as.character(params$Time)
  params[["N Risk"]] <- as.character(params[["N Risk"]])
  params[["N Event"]] <- as.character(params[["N Event"]])

  attr(params, "ci") <- s$conf.int
  class(params) <- c("parameters_model", "see_parameters_model", class(params))

  params
}


#################### .coxph ------


#' @export
standard_error.coxph <- function(model, method = NULL, ...) {
  robust <- !is.null(method) && method == "robust"
  if (isTRUE(robust)) {
    return(standard_error(model, ...))
  }

  params <- insight::get_parameters(model)
  cs <- stats::coef(summary(model))
  se <- cs[, 3]

  # check
  if (length(se) > nrow(params)) {
    se <- se[match(params$Parameter, .remove_backticks_from_string(rownames(cs)))]
  }

  .data_frame(
    Parameter = params$Parameter,
    SE = as.vector(se)
  )
}


#' @export
p_value.coxph <- function(model, ...) {
  params <- insight::get_parameters(model)
  stats <- insight::get_statistic(model)

  params <- merge(params, stats, sort = FALSE)
  statistic <- attributes(stats)$statistic

  # convert in case of z
  if (identical(statistic, "z-statistic")) {
    params$Statistic <- params$Statistic^2
  }

  .data_frame(
    Parameter = params$Parameter,
    p = as.vector(1 - stats::pchisq(params$Statistic, df = 1))
  )
}


#################### .aareg ------


#' @export
standard_error.aareg <- function(model, ...) {
  s <- summary(model)
  se <- s$table[, "se(coef)"]

  .data_frame(
    Parameter = .remove_backticks_from_string(names(se)),
    SE = as.vector(se)
  )
}


#' @export
p_value.aareg <- function(model, ...) {
  s <- summary(model)
  p <- s$table[, "p"]

  .data_frame(
    Parameter = .remove_backticks_from_string(names(p)),
    p = as.vector(p)
  )
}


#################### .survreg ------


#' @export
standard_error.survreg <- function(model, method = NULL, ...) {
  robust <- !is.null(method) && method == "robust"
  if (.check_vcov_args(robust, ...)) {
    return(standard_error.default(model, ...))
  }

  s <- summary(model)
  se <- s$table[, 2]

  .data_frame(
    Parameter = .remove_backticks_from_string(names(se)),
    SE = as.vector(se)
  )
}


#' @export
p_value.survreg <- function(model, method = NULL, ...) {
  robust <- !is.null(method) && method == "robust"
  if (.check_vcov_args(robust, ...)) {
    return(p_value.default(model, ...))
  }
  s <- summary(model)
  p <- s$table[, "p"]
  .data_frame(
    Parameter = .remove_backticks_from_string(names(p)),
    p = as.vector(p)
  )
}


#################### .riskRegression ------


#' @export
standard_error.riskRegression <- function(model, ...) {
  junk <- utils::capture.output(cs <- stats::coef(model))
  .data_frame(
    Parameter = .remove_backticks_from_string(as.vector(cs[, 1])),
    SE = as.numeric(cs[, "StandardError"])
  )
}


#' @export
p_value.riskRegression <- function(model, ...) {
  junk <- utils::capture.output(cs <- stats::coef(model))
  .data_frame(
    Parameter = .remove_backticks_from_string(as.vector(cs[, 1])),
    p = as.numeric(cs[, "Pvalue"])
  )
}