1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
# classes: .coxph, .aareg, .survreg, .riskRegression, .survfit
#################### .survfit ------
#' @export
model_parameters.survfit <- function(model,
keep = NULL,
drop = NULL,
verbose = TRUE,
...) {
s <- summary(model)
# extract all elements with same length, which occur most in that list
# that is the data we need
uniqv <- unique(lengths(s))
tab <- tabulate(match(lengths(s), uniqv))
idx <- which.max(tab)
most_len <- uniqv[idx]
# convert list into data frame, only for elements of same length
params <- as.data.frame(s[lengths(s) == most_len])
# keep specific columns
keep_columns <- intersect(
c("time", "n.risk", "n.event", "surv", "std.err", "strata", "lower", "upper"),
colnames(params)
)
params <- params[keep_columns]
# rename
params <- datawizard::data_rename(
params,
select = c(
Time = "time", `N Risk` = "n.risk", `N Event` = "n.event", Survival = "surv",
SE = "std.err", Group = "strata", CI_low = "lower", CI_high = "upper"
)
)
# fix labels
params$Group <- gsub("x=", "", params$Group, fixed = TRUE)
# These are integers, need to be character to display without decimals
params$Time <- as.character(params$Time)
params[["N Risk"]] <- as.character(params[["N Risk"]])
params[["N Event"]] <- as.character(params[["N Event"]])
attr(params, "ci") <- s$conf.int
class(params) <- c("parameters_model", "see_parameters_model", class(params))
params
}
#################### .coxph ------
#' @export
standard_error.coxph <- function(model, method = NULL, ...) {
robust <- !is.null(method) && method == "robust"
if (isTRUE(robust)) {
return(standard_error(model, ...))
}
params <- insight::get_parameters(model)
cs <- stats::coef(summary(model))
se <- cs[, 3]
# check
if (length(se) > nrow(params)) {
se <- se[match(params$Parameter, .remove_backticks_from_string(rownames(cs)))]
}
.data_frame(
Parameter = params$Parameter,
SE = as.vector(se)
)
}
#' @export
p_value.coxph <- function(model, ...) {
params <- insight::get_parameters(model)
stats <- insight::get_statistic(model)
params <- merge(params, stats, sort = FALSE)
statistic <- attributes(stats)$statistic
# convert in case of z
if (identical(statistic, "z-statistic")) {
params$Statistic <- params$Statistic^2
}
.data_frame(
Parameter = params$Parameter,
p = as.vector(1 - stats::pchisq(params$Statistic, df = 1))
)
}
#################### .aareg ------
#' @export
standard_error.aareg <- function(model, ...) {
s <- summary(model)
se <- s$table[, "se(coef)"]
.data_frame(
Parameter = .remove_backticks_from_string(names(se)),
SE = as.vector(se)
)
}
#' @export
p_value.aareg <- function(model, ...) {
s <- summary(model)
p <- s$table[, "p"]
.data_frame(
Parameter = .remove_backticks_from_string(names(p)),
p = as.vector(p)
)
}
#################### .survreg ------
#' @export
standard_error.survreg <- function(model, method = NULL, ...) {
robust <- !is.null(method) && method == "robust"
if (.check_vcov_args(robust, ...)) {
return(standard_error.default(model, ...))
}
s <- summary(model)
se <- s$table[, 2]
.data_frame(
Parameter = .remove_backticks_from_string(names(se)),
SE = as.vector(se)
)
}
#' @export
p_value.survreg <- function(model, method = NULL, ...) {
robust <- !is.null(method) && method == "robust"
if (.check_vcov_args(robust, ...)) {
return(p_value.default(model, ...))
}
s <- summary(model)
p <- s$table[, "p"]
.data_frame(
Parameter = .remove_backticks_from_string(names(p)),
p = as.vector(p)
)
}
#################### .riskRegression ------
#' @export
standard_error.riskRegression <- function(model, ...) {
junk <- utils::capture.output(cs <- stats::coef(model))
.data_frame(
Parameter = .remove_backticks_from_string(as.vector(cs[, 1])),
SE = as.numeric(cs[, "StandardError"])
)
}
#' @export
p_value.riskRegression <- function(model, ...) {
junk <- utils::capture.output(cs <- stats::coef(model))
.data_frame(
Parameter = .remove_backticks_from_string(as.vector(cs[, 1])),
p = as.numeric(cs[, "Pvalue"])
)
}
|