1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
#' Parameters from robust statistical objects in `WRS2`
#'
#' @param model Object from `WRS2` package.
#' @param ... Arguments passed to or from other methods.
#' @inheritParams model_parameters.default
#'
#' @examples
#' if (require("WRS2") && packageVersion("WRS2") >= "1.1.3") {
#' model <- t1way(libido ~ dose, data = viagra)
#' model_parameters(model)
#' }
#' @return A data frame of indices related to the model's parameters.
#' @export
# anova ----------------------
model_parameters.t1way <- function(model, keep = NULL, verbose = TRUE, ...) {
parameters <- .extract_wrs2_t1way(model)
parameters <- .add_htest_parameters_attributes(parameters, model, ...)
class(parameters) <- c("parameters_model", "see_parameters_model", class(parameters))
parameters
}
.extract_wrs2_t1way <- function(model) {
fcall <- insight::safe_deparse(model$call)
# effect sizes are by default contained for `t1way` but not `rmanova`
if (grepl("^(t1way|WRS2::t1way)", fcall)) {
data.frame(
`F` = model$test,
df = model$df1,
df_error = model$df2,
p = model$p.value,
Method = "A heteroscedastic one-way ANOVA for trimmed means",
Estimate = model$effsize,
CI = 1 - model$alpha,
CI_low = model$effsize_ci[1],
CI_high = model$effsize_ci[2],
Effectsize = "Explanatory measure of effect size",
stringsAsFactors = FALSE
)
} else if (grepl("^(rmanova|WRS2::rmanova)", fcall)) {
data.frame(
`F` = model$test,
df = model$df1,
df_error = model$df2,
p = model$p.value,
Method = "A heteroscedastic one-way repeated measures ANOVA for trimmed means",
stringsAsFactors = FALSE
)
}
}
#' @export
model_parameters.med1way <- function(model, verbose = TRUE, ...) {
parameters <- .extract_wrs2_med1way(model)
parameters <- .add_htest_parameters_attributes(parameters, model, ...)
class(parameters) <- c("parameters_model", "see_parameters_model", class(parameters))
parameters
}
.extract_wrs2_med1way <- function(model) {
data.frame(
`F` = model$test,
`Critical value` = model$crit.val,
p = model$p.value,
Method = "Heteroscedastic one-way ANOVA for medians",
stringsAsFactors = FALSE
)
}
#' @export
model_parameters.dep.effect <- function(model,
keep = NULL,
verbose = TRUE,
...) {
parameters <- .extract_wrs2_dep.effect(model, keep = keep)
class(parameters) <- c("parameters_model", "see_parameters_model", class(parameters))
parameters
}
.extract_wrs2_dep.effect <- function(model, keep = NULL, ...) {
out <- as.data.frame(model)
out$Parameter <- c(attributes(out)$row.names)
# effectsize descriptions
out$Effectsize <- c(
"Algina-Keselman-Penfield robust standardized difference", # AKP
"Quantile shift based on the median of the distribution of difference scores", # QS (median)
"Quantile shift based on the trimmed mean of the distribution of X-Y", # QStr
"P(X<Y), Probability of first being less than second for a random pair" # SIGN
)
# column names
names(out) <- c(
"Mu", "Estimate", "Small", "Medium", "Large",
"CI_low", "CI_high", "Parameter", "Effectsize"
)
# add CI column
out$CI <- 0.95
# reorder columns
col_order <- c(
"Parameter", "Estimate", "CI", "CI_low", "CI_high", "Effectsize",
"Mu", "Small", "Medium", "Large"
)
out <- out[col_order[col_order %in% names(out)]]
# remove rownames
rownames(out) <- NULL
# select a specific effect size only
if (!is.null(keep)) {
out <- out[out$Parameter == keep, ]
}
out
}
# t-test ----------------------
#' @export
model_parameters.yuen <- function(model, verbose = TRUE, ...) {
parameters <- .extract_wrs2_yuen(model)
parameters <- .add_htest_parameters_attributes(parameters, model, ...)
class(parameters) <- c("parameters_model", "see_parameters_model", class(parameters))
parameters
}
.extract_wrs2_yuen <- function(model) {
fcall <- insight::safe_deparse(model$call)
# the latter regexe covers `rlang::exec` or `do.call` instances
# between-subjects
if (grepl("^(yuen\\(|WRS2::yuen\\()", fcall) ||
grepl("function (formula, data, tr = 0.2, ...)", fcall, fixed = TRUE)) {
out <- data.frame(
t = model$test,
df_error = model$df,
p = model$p.value,
Method = "Yuen's test on trimmed means for independent samples",
Difference = model$diff,
CI = 0.95,
Difference_CI_low = model$conf.int[1],
Difference_CI_high = model$conf.int[2],
Estimate = model$effsize,
Effectsize = "Explanatory measure of effect size",
stringsAsFactors = FALSE
)
} else {
# within-subjects
out <- data.frame(
t = model$test,
df_error = model$df,
p = model$p.value,
Method = "Yuen's test on trimmed means for dependent samples",
Difference = model$diff,
CI = 0.95,
Difference_CI_low = model$conf.int[1],
Difference_CI_high = model$conf.int[2],
Estimate = model$effsize,
Effectsize = "Explanatory measure of effect size",
stringsAsFactors = FALSE
)
}
out
}
# pairwise comparisons ----------------------
#' @export
model_parameters.mcp1 <- function(model, verbose = TRUE, ...) {
parameters <- .extract_wrs2_mcp12(model)
parameters <- .add_htest_parameters_attributes(parameters, model, ...)
class(parameters) <- c("parameters_model", "see_parameters_model", class(parameters))
parameters
}
#' @export
model_parameters.mcp2 <- model_parameters.mcp1
.extract_wrs2_mcp12 <- function(model) {
# component of the object containing results from multiple comparisons
out <- as.data.frame(model$comp)
# rename to `eaystats` conventions
names(out)[1:6] <- c("Group1", "Group2", "Psihat", "CI_low", "CI_high", "p")
# convert names to character
out$Group1 <- model$fnames[model$comp[, 1]]
out$Group2 <- model$fnames[model$comp[, 2]]
# CI column
out$CI <- 1 - model$alpha
# reorder
col_order <- c("Group1", "Group2", "Psihat", "CI", "CI_low", "CI_high", "p", "p.crit")
out <- out[col_order[col_order %in% names(out)]]
out
}
# comparison of discrete distributions ----------------------
#' @export
model_parameters.robtab <- function(model, verbose = TRUE, ...) {
parameters <- .extract_wrs2_robtab(model)
parameters <- .add_htest_parameters_attributes(parameters, model, ...)
class(parameters) <- c("parameters_model", "see_parameters_model", class(parameters))
parameters
}
.extract_wrs2_robtab <- function(model) {
fcall <- insight::safe_deparse(model$call)
# dataframe
out <- as.data.frame(model$partable)
# rename to `eaystats` conventions
if (grepl("^(discmcp\\(|WRS2::discmcp\\()", fcall)) {
names(out)[1:3] <- c("Group1", "Group2", "p")
}
if (grepl("^(discstep\\(|WRS2::discstep\\()", fcall)) {
names(out)[1:2] <- c("Groups", "p")
}
if (grepl("^(binband\\(|WRS2::binband\\()", fcall)) {
names(out)[1:4] <- c("Value", "Probability1", "Probability2", "Difference")
if ("p.value" %in% names(out)) {
out$p <- out$p.value
out$p.value <- NULL
}
}
out
}
# one-sample percentile bootstrap ----------------------
#' @export
model_parameters.onesampb <- function(model, verbose = TRUE, ...) {
parameters <- .extract_wrs2_onesampb(model)
parameters <- .add_htest_parameters_attributes(parameters, model, ...)
class(parameters) <- c("parameters_model", "see_parameters_model", class(parameters))
parameters
}
.extract_wrs2_onesampb <- function(model) {
data.frame(
Estimate = model$estimate,
CI = 1 - model$alpha,
CI_low = model$ci[1],
CI_high = model$ci[2],
p = model$p.value,
n_Obs = model$n,
Effectsize = "Robust location measure",
Method = "One-sample percentile bootstrap",
stringsAsFactors = FALSE
)
}
#' @export
model_parameters.trimcibt <- function(model, verbose = TRUE, ...) {
parameters <- .extract_wrs2_trimcibt(model)
parameters <- .add_htest_parameters_attributes(parameters, model, ...)
class(parameters) <- c("parameters_model", "see_parameters_model", class(parameters))
parameters
}
.extract_wrs2_trimcibt <- function(model) {
data.frame(
t = model$test.stat,
p = model$p.value,
n_Obs = model$n,
Method = "Bootstrap-t method for one-sample test",
Estimate = model$estimate[[1]],
CI = 1 - model$alpha,
CI_low = model$ci[1],
CI_high = model$ci[2],
Effectsize = "Trimmed mean",
stringsAsFactors = FALSE
)
}
# AKP effect sizes ----------------------
#' @export
model_parameters.AKP <- function(model, verbose = TRUE, ...) {
parameters <- .extract_wrs2_AKP(model)
parameters <- .add_htest_parameters_attributes(parameters, model, ...)
class(parameters) <- c("parameters_model", "see_parameters_model", class(parameters))
parameters
}
.extract_wrs2_AKP <- function(model) {
data.frame(
Estimate = model$AKPeffect,
CI = 1 - model$alpha,
CI_low = model$AKPci[1],
CI_high = model$AKPci[2],
Effectsize = "Algina-Keselman-Penfield robust standardized difference",
stringsAsFactors = FALSE
)
}
#' @export
model_parameters.wmcpAKP <- function(model, verbose = TRUE, ...) {
parameters <- .extract_wrs2_wmcpAKP(model)
class(parameters) <- c("parameters_model", "see_parameters_model", class(parameters))
parameters
}
.extract_wrs2_wmcpAKP <- function(model) {
data.frame(
Estimate = model[[1]],
CI = 0.95,
CI_low = model[[2]],
CI_high = model[[3]],
Effectsize = "Algina-Keselman-Penfield robust standardized difference average",
stringsAsFactors = FALSE
)
}
|