1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
#' @title Find number of clusters in your data
#' @name n_clusters
#'
#' @description
#' Similarly to [`n_factors()`] for factor / principal component analysis,
#' `n_clusters()` is the main function to find out the optimal numbers of clusters
#' present in the data based on the maximum consensus of a large number of
#' methods.
#'
#' Essentially, there exist many methods to determine the optimal number of
#' clusters, each with pros and cons, benefits and limitations. The main
#' `n_clusters` function proposes to run all of them, and find out the number of
#' clusters that is suggested by the majority of methods (in case of ties, it
#' will select the most parsimonious solution with fewer clusters).
#'
#' Note that we also implement some specific, commonly used methods, like the
#' Elbow or the Gap method, with their own visualization functionalities. See
#' the examples below for more details.
#'
#' @param x A data frame.
#' @param standardize Standardize the dataframe before clustering (default).
#' @param include_factors Logical, if `TRUE`, factors are converted to numerical
#' values in order to be included in the data for determining the number of
#' clusters. By default, factors are removed, because most methods that
#' determine the number of clusters need numeric input only.
#' @param package Package from which methods are to be called to determine the
#' number of clusters. Can be `"all"` or a vector containing
#' `"easystats"`, `"NbClust"`, `"mclust"`, and `"M3C"`.
#' @param fast If `FALSE`, will compute 4 more indices (sets `index = "allong"`
#' in `NbClust`). This has been deactivated by default as it is
#' computationally heavy.
#' @param n_max Maximal number of clusters to test.
#' @param clustering_function,gap_method Other arguments passed to other
#' functions. `clustering_function` is used by `fviz_nbclust()` and
#' can be `kmeans`, `cluster::pam`, `cluster::clara`, `cluster::fanny`, and
#' more. `gap_method` is used by `cluster::maxSE` to extract the optimal
#' numbers of clusters (see its `method` argument).
#' @param method,min_size,eps_n,eps_range Arguments for DBSCAN algorithm.
#' @param distance_method The distance method (passed to [`dist()`]). Used by
#' algorithms relying on the distance matrix, such as `hclust` or `dbscan`.
#' @param hclust_method The hierarchical clustering method (passed to [`hclust()`]).
#' @param nbclust_method The clustering method (passed to `NbClust::NbClust()`
#' as `method`).
#' @inheritParams model_parameters.default
#'
#'
#'
#' @note There is also a [`plot()`-method](https://easystats.github.io/see/articles/parameters.html) implemented in the [**see**-package](https://easystats.github.io/see/).
#'
#' @examples
#' \donttest{
#' library(parameters)
#'
#' # The main 'n_clusters' function ===============================
#' if (require("mclust", quietly = TRUE) && require("NbClust", quietly = TRUE) &&
#' require("cluster", quietly = TRUE) && require("see", quietly = TRUE)) {
#' n <- n_clusters(iris[, 1:4], package = c("NbClust", "mclust")) # package can be "all"
#' n
#' summary(n)
#' as.data.frame(n) # Duration is the time elapsed for each method in seconds
#' plot(n)
#'
#' # The following runs all the method but it significantly slower
#' # n_clusters(iris[1:4], standardize = FALSE, package = "all", fast = FALSE)
#' }
#' }
#' @export
n_clusters <- function(x,
standardize = TRUE,
include_factors = FALSE,
package = c("easystats", "NbClust", "mclust"),
fast = TRUE,
nbclust_method = "kmeans",
n_max = 10,
...) {
if (all(package == "all")) {
package <- c("easystats", "NbClust", "mclust", "M3C")
}
x <- .prepare_data_clustering(x, include_factors = include_factors, standardize = standardize, ...)
out <- data.frame()
if ("easystats" %in% tolower(package)) {
out <- rbind(out, .n_clusters_easystats(x, n_max = n_max, ...))
}
if ("nbclust" %in% tolower(package)) {
out <- rbind(out, .n_clusters_NbClust(x, fast = fast, nbclust_method = nbclust_method, n_max = n_max, ...))
}
if ("mclust" %in% tolower(package)) {
out <- rbind(out, .n_clusters_mclust(x, n_max = n_max, ...))
}
if ("M3C" %in% tolower(package)) {
out <- rbind(out, .n_clusters_M3C(x, n_max = n_max, fast = fast))
}
# Drop Nans
out <- out[!is.na(out$n_Clusters), ]
# Error if no solution
if (nrow(out) == 0) {
insight::format_error("No complete solution was found. Please try again with more methods.")
}
# Clean
out <- out[order(out$n_Clusters), ] # Arrange by n clusters
row.names(out) <- NULL # Reset row index
out$Method <- as.character(out$Method)
# Remove duplicate methods starting with the smallest
dupli <- NULL
for (i in seq_len(nrow(out))) {
if (i > 1 && out[i, "Method"] %in% out$Method[1:i - 1]) {
dupli <- c(dupli, i)
}
}
if (!is.null(dupli)) {
out <- out[-dupli, ]
}
# Add summary
by_clusters <- .data_frame(
n_Clusters = as.numeric(unique(out$n_Clusters)),
n_Methods = as.numeric(by(out, as.factor(out$n_Clusters), function(out) n <- nrow(out)))
)
attr(out, "summary") <- by_clusters
attr(out, "n") <- min(as.numeric(as.character(
by_clusters[by_clusters$n_Methods == max(by_clusters$n_Methods), "n_Clusters"]
)))
class(out) <- c("n_clusters", "see_n_clusters", class(out))
out
}
#' @keywords internal
.n_clusters_mclust <- function(x, n_max = 10, ...) {
insight::check_if_installed("mclust")
t0 <- Sys.time()
mclustBIC <- mclust::mclustBIC # this is needed as it is internally required by the following function
BIC <- mclust::mclustBIC(x, G = 1:n_max, verbose = FALSE)
# Extract the best solutions as shown in summary(BIC)
out <- strsplit(names(unclass(summary(BIC))), split = ",", fixed = TRUE)
# Get separated vectors
models <- as.character(sapply(out, function(x) x[[1]]))
n <- as.numeric(sapply(out, function(x) x[[2]]))
.data_frame(
n_Clusters = n,
Method = paste0("Mixture (", models, ")"),
Package = "mclust",
Duration = as.numeric(difftime(Sys.time(), t0, units = "secs"))
)
}
# Methods -----------------------------------------------------------------
#' @keywords internal
.n_clusters_easystats <- function(x, n_max = 10, ...) {
elb <- n_clusters_elbow(x, preprocess = FALSE, n_max = n_max, ...)
sil <- n_clusters_silhouette(x, preprocess = FALSE, n_max = n_max, ...)
gap1 <- n_clusters_gap(x, preprocess = FALSE, gap_method = "firstSEmax", n_max = n_max, ...)
gap2 <- n_clusters_gap(x, preprocess = FALSE, gap_method = "globalSEmax", n_max = n_max, ...)
.data_frame(
n_Clusters = c(
attributes(elb)$n,
attributes(sil)$n,
attributes(gap1)$n,
attributes(gap2)$n
),
Method = c("Elbow", "Silhouette", "Gap_Maechler2012", "Gap_Dudoit2002"),
Package = "easystats",
Duration = c(
attributes(elb)$duration,
attributes(sil)$duration,
attributes(gap1)$duration,
attributes(gap2)$duration
)
)
}
#' @keywords internal
.n_clusters_NbClust <- function(x, fast = TRUE, nbclust_method = "kmeans", n_max = 10, indices = "all", ...) {
insight::check_if_installed("NbClust")
if (all(indices == "all")) {
indices <- c(
"kl", "Ch", "Hartigan", "CCC", "Scott", "Marriot", "trcovw",
"Tracew", "Friedman", "Rubin", "Cindex", "DB", "Silhouette",
"Duda", "Pseudot2", "Beale", "Ratkowsky", "Ball", "PtBiserial",
"Frey", "Mcclain", "Dunn", "SDindex", "SDbw", "gap", "gamma",
"gplus", "tau"
)
# c("hubert", "dindex") are graphical methods
}
if (fast) {
indices <- indices[!indices %in% c("gap", "gamma", "gplus", "tau")]
}
out <- data.frame()
for (idx in indices) {
t0 <- Sys.time()
n <- tryCatch(
expr = {
.catch_warnings(NbClust::NbClust(
x,
index = tolower(idx),
method = nbclust_method,
max.nc = n_max,
...
))
},
error = function(e) {
NULL
}
)
if (!is.null(n)) {
# Catch and print potential warnings
w <- ""
if (!is.null(n$warnings)) {
w <- paste0("\n - ", unlist(n$warnings), collapse = "")
insight::format_warning(paste0("For ", idx, " index (NbClust):", w))
}
# Don't merge results if convergence issue
if (!grepl("did not converge in", w, fixed = TRUE)) {
out <- rbind(out, .data_frame(
n_Clusters = n$out$Best.nc[["Number_clusters"]],
Method = idx,
Package = "NbClust",
Duration = as.numeric(difftime(Sys.time(), t0, units = "secs"))
))
}
}
}
out
}
#' @keywords internal
.n_clusters_M3C <- function(x, n_max = 10, fast = TRUE, ...) {
if (!requireNamespace("M3C", quietly = TRUE)) { # nolint
insight::format_error(
"Package `M3C` required for this function to work. Please install it by first running `remotes::install_github('https://github.com/crj32/M3C')` (the package is not on CRAN)."
) # Not on CRAN (but on github and bioconductor)
}
data <- data.frame(t(x))
colnames(data) <- paste0("x", seq(1, ncol(data))) # Add columns names as required by the package
t0 <- Sys.time()
out <- M3C::M3C(data, method = 2, maxK = n_max, removeplots = TRUE, silent = TRUE)
out <- .data_frame(
n_Clusters = out$scores[which.min(out$scores$PCSI), "K"],
Method = "Consensus clustering algorithm (penalty term)",
Package = "M3C",
Duration = as.numeric(difftime(Sys.time(), t0, units = "secs"))
)
# Monte Carlo Version (Super slow)
if (isFALSE(fast)) {
t0 <- Sys.time()
out2 <- M3C::M3C(data, method = 1, maxK = n_max, removeplots = TRUE, silent = TRUE)
out <- rbind(
out,
.data_frame(
n_Clusters = out2$scores[which.max(out2$scores$RCSI), "K"],
Method = "Consensus clustering algorithm (Monte Carlo)",
Package = "M3C",
Duration = as.numeric(difftime(Sys.time(), t0, units = "secs"))
)
)
}
out
}
|