1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
|
#' Number of components/factors to retain in PCA/FA
#'
#' This function runs many existing procedures for determining how many factors
#' to retain/extract from factor analysis (FA) or dimension reduction (PCA). It
#' returns the number of factors based on the maximum consensus between methods.
#' In case of ties, it will keep the simplest model and select the solution
#' with the fewer factors.
#'
#' @param x A data frame.
#' @param type Can be `"FA"` or `"PCA"`, depending on what you want to do.
#' @param rotation Only used for VSS (Very Simple Structure criterion, see
#' [psych::VSS()]). The rotation to apply. Can be `"none"`, `"varimax"`,
#' `"quartimax"`, `"bentlerT"`, `"equamax"`, `"varimin"`, `"geominT"` and
#' `"bifactor"` for orthogonal rotations, and `"promax"`, `"oblimin"`,
#' `"simplimax"`, `"bentlerQ"`, `"geominQ"`, `"biquartimin"` and `"cluster"`
#' for oblique transformations.
#' @param algorithm Factoring method used by VSS. Can be `"pa"` for Principal
#' Axis Factor Analysis, `"minres"` for minimum residual (OLS) factoring,
#' `"mle"` for Maximum Likelihood FA and `"pc"` for Principal Components.
#' `"default"` will select `"minres"` if `type = "FA"` and `"pc"` if
#' `type = "PCA"`.
#' @param package Package from which respective methods are used. Can be
#' `"all"` or a vector containing `"nFactors"`, `"psych"`, `"PCDimension"`,
#' `"fit"` or `"EGAnet"`. Note that `"fit"` (which actually also relies on the
#' `psych` package) and `"EGAnet"` can be very slow for bigger datasets. Thus,
#' the default is `c("nFactors", "psych")`. You must have the respective
#' packages installed for the methods to be used.
#' @param safe If `TRUE`, the function will run all the procedures in try
#' blocks, and will only return those that work and silently skip the ones
#' that may fail.
#' @param cor An optional correlation matrix that can be used (note that the
#' data must still be passed as the first argument). If `NULL`, will
#' compute it by running `cor()` on the passed data.
#' @param n_max If set to a value (e.g., `10`), will drop from the results all
#' methods that suggest a higher number of components. The interpretation becomes
#' 'from all the methods that suggested a number lower than n_max, the results
#' are ...'.
#' @param ... Arguments passed to or from other methods.
#'
#' @details `n_components()` is actually an alias for `n_factors()`, with
#' different defaults for the function arguments.
#'
#' @note There is also a
#' [`plot()`-method](https://easystats.github.io/see/articles/parameters.html)
#' implemented in the [**see**-package](https://easystats.github.io/see/).
#' `n_components()` is a convenient short-cut for `n_factors(type = "PCA")`.
#'
#' @examplesIf require("PCDimension", quietly = TRUE) && require("nFactors", quietly = TRUE) && require("EGAnet", quietly = TRUE) && require("psych", quietly = TRUE)
#' library(parameters)
#' n_factors(mtcars, type = "PCA")
#'
#' result <- n_factors(mtcars[1:5], type = "FA")
#' as.data.frame(result)
#' summary(result)
#' \donttest{
#' # Setting package = 'all' will increase the number of methods (but is slow)
#' n_factors(mtcars, type = "PCA", package = "all")
#' n_factors(mtcars, type = "FA", algorithm = "mle", package = "all")
#' }
#'
#' @return A data frame.
#'
#' @references
#'
#' - Bartlett, M. S. (1950). Tests of significance in factor analysis.
#' British Journal of statistical psychology, 3(2), 77-85.
#'
#' - Bentler, P. M., & Yuan, K. H. (1996). Test of linear trend in
#' eigenvalues of a covariance matrix with application to data analysis.
#' British Journal of Mathematical and Statistical Psychology, 49(2), 299-312.
#'
#' - Cattell, R. B. (1966). The scree test for the number of factors.
#' Multivariate behavioral research, 1(2), 245-276.
#'
#' - Finch, W. H. (2019). Using Fit Statistic Differences to Determine the
#' Optimal Number of Factors to Retain in an Exploratory Factor Analysis.
#' Educational and Psychological Measurement.
#'
#' - Zoski, K. W., & Jurs, S. (1996). An objective counterpart to the
#' visual scree test for factor analysis: The standard error scree.
#' Educational and Psychological Measurement, 56(3), 443-451.
#'
#' - Zoski, K., & Jurs, S. (1993). Using multiple regression to determine
#' the number of factors to retain in factor analysis. Multiple Linear
#' Regression Viewpoints, 20(1), 5-9.
#'
#' - Nasser, F., Benson, J., & Wisenbaker, J. (2002). The performance of
#' regression-based variations of the visual scree for determining the number
#' of common factors. Educational and psychological measurement, 62(3),
#' 397-419.
#'
#' - Golino, H., Shi, D., Garrido, L. E., Christensen, A. P., Nieto, M.
#' D., Sadana, R., & Thiyagarajan, J. A. (2018). Investigating the performance
#' of Exploratory Graph Analysis and traditional techniques to identify the
#' number of latent factors: A simulation and tutorial.
#'
#' - Golino, H. F., & Epskamp, S. (2017). Exploratory graph analysis: A
#' new approach for estimating the number of dimensions in psychological
#' research. PloS one, 12(6), e0174035.
#'
#' - Revelle, W., & Rocklin, T. (1979). Very simple structure: An
#' alternative procedure for estimating the optimal number of interpretable
#' factors. Multivariate Behavioral Research, 14(4), 403-414.
#'
#' - Velicer, W. F. (1976). Determining the number of components from the
#' matrix of partial correlations. Psychometrika, 41(3), 321-327.
#'
#' @export
n_factors <- function(x,
type = "FA",
rotation = "varimax",
algorithm = "default",
package = c("nFactors", "psych"),
cor = NULL,
safe = TRUE,
n_max = NULL,
...) {
if (all(package == "all")) {
package <- c("nFactors", "EGAnet", "psych", "fit", "pcdimension")
}
# Get number of observations
if (is.data.frame(x)) {
n_obs <- nrow(x)
} else if (is.numeric(x) && !is.null(cor)) {
n_obs <- x
package <- package[!package %in% c("pcdimension", "PCDimension")]
} else if (is.matrix(x) || inherits(x, "easycormatrix")) {
insight::format_error(
"Please input the correlation matrix via the `cor` argument and the number of rows / observations via the first argument." # nolint
)
}
# Get only numeric
numerics <- vapply(x, is.numeric, TRUE)
if (!all(numerics)) {
insight::format_warning(paste0(
"Some variables are not numeric (",
toString(names(x)[!numerics]),
"). Dropping them."
))
}
x <- x[numerics]
# Correlation matrix
if (is.null(cor)) {
cor <- stats::cor(x, use = "pairwise.complete.obs", ...)
}
eigen_values <- eigen(cor)$values
# Smooth matrix if negative eigen values
if (any(eigen_values < 0)) {
insight::check_if_installed("psych")
cor <- psych::cor.smooth(cor, ...)
eigen_values <- eigen(cor)$values
}
# Initialize dataframe
out <- data.frame()
# nFactors -------------------------------------------
if ("nFactors" %in% package) {
insight::check_if_installed("nFactors")
# Model
if (tolower(type) %in% c("fa", "factor", "efa")) {
model <- "factors"
} else {
model <- "components"
}
# Compute all
if (safe) {
out <- rbind(
out,
tryCatch(.n_factors_bartlett(eigen_values, model, n_obs),
warning = function(w) data.frame(),
error = function(e) data.frame()
)
)
out <- rbind(
out,
tryCatch(.n_factors_bentler(eigen_values, model, n_obs),
warning = function(w) data.frame(),
error = function(e) data.frame()
)
)
out <- rbind(
out,
tryCatch(.n_factors_cng(eigen_values, model),
warning = function(w) data.frame(),
error = function(e) data.frame()
)
)
out <- rbind(
out,
tryCatch(.n_factors_mreg(eigen_values, model),
warning = function(w) data.frame(),
error = function(e) data.frame()
)
)
out <- rbind(
out,
tryCatch(.n_factors_scree(eigen_values, model),
warning = function(w) data.frame(),
error = function(e) data.frame()
)
)
out <- rbind(
out,
tryCatch(.n_factors_sescree(eigen_values, model),
warning = function(w) data.frame(),
error = function(e) data.frame()
)
)
} else {
out <- rbind(
out,
.n_factors_bartlett(eigen_values, model, n_obs)
)
out <- rbind(
out,
.n_factors_bentler(eigen_values, model, n_obs)
)
out <- rbind(
out,
.n_factors_cng(eigen_values, model)
)
out <- rbind(
out,
.n_factors_mreg(eigen_values, model)
)
out <- rbind(
out,
.n_factors_scree(eigen_values, model)
)
out <- rbind(
out,
.n_factors_sescree(eigen_values, model)
)
}
}
# EGAnet -------------------------------------------
if ("EGAnet" %in% package) {
insight::check_if_installed("EGAnet")
if (safe) {
out <- rbind(
out,
tryCatch(.n_factors_ega(x, cor, n_obs, eigen_values, type),
# warning = function(w) data.frame(),
error = function(e) data.frame()
)
)
} else {
out <- rbind(
out,
.n_factors_ega(x, cor, n_obs, eigen_values, type)
)
}
}
# psych -------------------------------------------
if ("psych" %in% package) {
insight::check_if_installed("psych")
if (safe) {
out <- rbind(
out,
tryCatch(.n_factors_vss(x, cor, n_obs, type, rotation, algorithm),
# warning = function(w) data.frame(),
error = function(e) data.frame()
)
)
} else {
out <- rbind(
out,
.n_factors_vss(x, cor, n_obs, type, rotation, algorithm)
)
}
}
# fit -------------------------------------------
if ("fit" %in% package) {
insight::check_if_installed("psych")
if (safe) {
out <- rbind(
out,
tryCatch(.n_factors_fit(x, cor, n_obs, type, rotation, algorithm),
warning = function(w) data.frame(),
error = function(e) data.frame()
)
)
} else {
out <- rbind(
out,
.n_factors_fit(x, cor, n_obs, type, rotation, algorithm)
)
}
}
# pcdimension -------------------------------------------
if ("pcdimension" %in% tolower(package)) {
insight::check_if_installed("PCDimension")
if (safe) {
out <- rbind(
out,
tryCatch(.n_factors_PCDimension(x, type),
warning = function(w) data.frame(),
error = function(e) data.frame()
)
)
} else {
out <- rbind(
out,
.n_factors_PCDimension(x, type)
)
}
}
# OUTPUT ----------------------------------------------
# TODO created weighted composite score
out <- out[!is.na(out$n_Factors), ] # Remove empty methods
out <- out[order(out$n_Factors), ] # Arrange by n factors
row.names(out) <- NULL # Reset row index
if (!is.null(n_max)) {
out <- out[out$n_Factors <= n_max, ]
}
# Add summary
by_factors <- .data_frame(
n_Factors = as.numeric(unique(out$n_Factors)),
n_Methods = as.numeric(by(out, as.factor(out$n_Factors), function(out) n <- nrow(out)))
)
# Add cumulative percentage of variance explained
fa <- factor_analysis(x, cor = cor, n = max(by_factors$n_Factors)) # Get it from our fa:: wrapper (TODO: that's probably not the most efficient)
varex <- attributes(fa)$summary
# Extract number of factors from EFA output (usually MR1, ML1, etc.)
varex$n_Factors <- as.numeric(gsub("[^\\d]+", "", varex$Component, perl = TRUE))
# Merge (and like that filter out empty methods)
by_factors <- merge(by_factors, varex[, c("n_Factors", "Variance_Cumulative")], by = "n_Factors")
attr(out, "Variance_Explained") <- varex # We add all the variance explained (for plotting)
attr(out, "summary") <- by_factors
attr(out, "n") <- min(as.numeric(as.character(
by_factors[by_factors$n_Methods == max(by_factors$n_Methods), "n_Factors"]
)))
class(out) <- c("n_factors", "see_n_factors", class(out))
out
}
#' @rdname n_factors
#' @export
n_components <- function(x,
type = "PCA",
rotation = "varimax",
algorithm = "default",
package = c("nFactors", "psych"),
cor = NULL,
safe = TRUE,
...) {
n_factors(
x,
type = type,
rotation = rotation,
algorithm = algorithm,
package = package,
cor = cor,
safe = safe,
...
)
}
#' @export
print.n_factors <- function(x, ...) {
results <- attributes(x)$summary
# Extract info
max_methods <- max(results$n_Methods)
best_n <- attributes(x)$n
# Extract methods
if ("n_Factors" %in% names(x)) {
type <- "factor"
methods_text <- toString(as.character(x[x$n_Factors == best_n, "Method"]))
} else {
type <- "cluster"
methods_text <- toString(as.character(x[x$n_Clusters == best_n, "Method"]))
}
# Text
msg_text <- paste0(
"The choice of ",
as.character(best_n),
ifelse(type == "factor", " dimensions ", " clusters "),
"is supported by ",
max_methods,
" (",
sprintf("%.2f", max_methods / nrow(x) * 100),
"%) methods out of ",
nrow(x),
" (",
methods_text,
").\n"
)
insight::print_color("# Method Agreement Procedure:\n\n", "blue")
cat(msg_text)
invisible(x)
}
#' @export
summary.n_factors <- function(object, ...) {
attributes(object)$summary
}
#' @export
as.numeric.n_factors <- function(x, ...) {
attributes(x)$n
}
#' @export
as.double.n_factors <- as.numeric.n_factors
#' @export
summary.n_clusters <- summary.n_factors
#' @export
as.numeric.n_clusters <- as.numeric.n_factors
#' @export
as.double.n_clusters <- as.double.n_factors
#' @export
print.n_clusters <- print.n_factors
# Methods -----------------------------------------------------------------
#' Bartlett, Anderson and Lawley Procedures
#' @keywords internal
.n_factors_bartlett <- function(eigen_values = NULL, model = "factors", nobs = NULL) {
nfac <- nFactors::nBartlett(
eigen_values,
N = nobs,
cor = TRUE,
alpha = 0.05,
details = FALSE
)$nFactors
.data_frame(
n_Factors = as.numeric(nfac),
Method = insight::format_capitalize(names(nfac)),
Family = "Barlett"
)
}
#' Bentler and Yuan's Procedure
#' @keywords internal
.n_factors_bentler <- function(eigen_values = NULL, model = "factors", nobs = NULL) {
nfac <- .nBentler(
x = eigen_values,
N = nobs,
model = model,
alpha = 0.05,
details = FALSE
)$nFactors
.data_frame(
n_Factors = as.numeric(nfac),
Method = "Bentler",
Family = "Bentler"
)
}
#' Cattell-Nelson-Gorsuch CNG Indices
#' @keywords internal
.n_factors_cng <- function(eigen_values = NULL, model = "factors") {
if (length(eigen_values) < 6) {
nfac <- NA
} else {
nfac <- nFactors::nCng(x = eigen_values, cor = TRUE, model = model)$nFactors
}
.data_frame(
n_Factors = as.numeric(nfac),
Method = "CNG",
Family = "CNG"
)
}
#' Multiple Regression Procedure
#' @keywords internal
.n_factors_mreg <- function(eigen_values = NULL, model = "factors") {
if (length(eigen_values) < 6) {
nfac <- NA
} else {
nfac <- nFactors::nMreg(x = eigen_values, cor = TRUE, model = model)$nFactors
}
.data_frame(
n_Factors = as.numeric(nfac),
Method = c("beta", "t", "p"),
Family = "Multiple_regression"
)
}
#' Non Graphical Cattell's Scree Test
#' @keywords internal
.n_factors_scree <- function(eigen_values = NULL, model = "factors") {
nfac <- unlist(nFactors::nScree(x = eigen_values, cor = TRUE, model = model)$Components)
.data_frame(
n_Factors = as.numeric(nfac),
Method = c("Optimal coordinates", "Acceleration factor", "Parallel analysis", "Kaiser criterion"),
Family = "Scree"
)
}
#' Standard Error Scree and Coefficient of Determination Procedures
#' @keywords internal
.n_factors_sescree <- function(eigen_values = NULL, model = "factors") {
nfac <- nFactors::nSeScree(x = eigen_values, cor = TRUE, model = model)$nFactors
.data_frame(
n_Factors = as.numeric(nfac),
Method = c("Scree (SE)", "Scree (R2)"),
Family = "Scree_SE"
)
}
# EGAnet ------------------------
.n_factors_ega <- function(x = NULL,
cor = NULL,
nobs = NULL,
eigen_values = NULL,
type = "FA") {
# Replace with own correlation matrix
junk <- utils::capture.output(suppressWarnings(suppressMessages(
nfac_glasso <- EGAnet::EGA(cor, n = nobs, model = "glasso", plot.EGA = FALSE)$n.dim # nolint
)))
junk <- utils::capture.output(suppressWarnings(suppressMessages(
nfac_TMFG <- .safe(EGAnet::EGA(cor, n = nobs, model = "TMFG", plot.EGA = FALSE)$n.dim, NA) # nolint
)))
.data_frame(
n_Factors = as.numeric(c(nfac_glasso, nfac_TMFG)),
Method = c("EGA (glasso)", "EGA (TMFG)"),
Family = "EGA"
)
}
# psych ------------------------
#' @keywords internal
.n_factors_parallel <- function(x = NULL,
cor = NULL,
nobs = NULL,
type = "FA") {
# Altnerative version of parralel analysis
# Not used because already included in nFactors
if (tolower(type) %in% c("fa", "factor", "efa")) {
fa <- "fa"
} else {
fa <- "pc"
}
insight::check_if_installed("psych")
out <- psych::fa.parallel(cor, n.obs = nobs, fa = fa, plot = FALSE, fm = "ml")
.data_frame(
n_Factors = as.numeric(stats::na.omit(c(out$nfact, out$ncomp))),
Method = "Parallel",
Family = "psych"
)
}
#' @keywords internal
.n_factors_vss <- function(x = NULL,
cor = NULL,
nobs = NULL,
type = "FA",
rotation = "varimax",
algorithm = "default") {
if (algorithm == "default") {
if (tolower(type) %in% c("fa", "factor", "efa")) {
algorithm <- "minres"
} else {
algorithm <- "pc"
}
}
insight::check_if_installed("psych")
# Compute VSS
vss <- psych::VSS(
cor,
n = ncol(x) - 1,
n.obs = nobs,
rotate = rotation,
fm = algorithm,
plot = FALSE
)
# Format results
stats <- vss$vss.stats
stats$map <- vss$map
stats$n_Factors <- seq_len(nrow(stats))
names(stats) <- gsub("cfit.", "VSS_Complexity_", names(stats))
# Indices
vss_1 <- which.max(stats$VSS_Complexity_1)
vss_2 <- which.max(stats$VSS_Complexity_2)
velicer_MAP <- which.min(stats$map)
BIC_reg <- which.min(stats$BIC)
BIC_adj <- which.min(stats$SABIC)
BIC_reg <- ifelse(length(BIC_reg) == 0, NA, BIC_reg)
BIC_adj <- ifelse(length(BIC_adj) == 0, NA, BIC_adj)
.data_frame(
n_Factors = as.numeric(c(vss_1, vss_2, velicer_MAP, BIC_reg, BIC_adj)),
Method = c("VSS complexity 1", "VSS complexity 2", "Velicer's MAP", "BIC", "BIC (adjusted)"),
Family = c("VSS", "VSS", "Velicers_MAP", "BIC", "BIC")
)
}
#' @keywords internal
.n_factors_fit <- function(x = NULL,
cor = NULL,
nobs = NULL,
type = "FA",
rotation = "varimax",
algorithm = "default",
threshold = 0.1) {
if (algorithm == "default") {
if (tolower(type) %in% c("fa", "factor", "efa")) {
algorithm <- "minres"
} else {
algorithm <- "pc"
}
}
insight::check_if_installed("psych")
rez <- data.frame()
for (n in 1:(ncol(cor) - 1)) {
if (tolower(type) %in% c("fa", "factor", "efa")) {
factors <- tryCatch(
suppressWarnings(
psych::fa(
cor,
nfactors = n,
n.obs = nobs,
rotate = rotation,
fm = algorithm
)
),
error = function(e) NA
)
} else {
factors <- tryCatch(
suppressWarnings(
psych::pca(
cor,
nfactors = n,
n.obs = nobs,
rotate = rotation
)
),
error = function(e) NA
)
}
if (all(is.na(factors))) {
next
}
rmsea <- ifelse(is.null(factors$RMSEA), NA, factors$RMSEA[1])
rmsr <- ifelse(is.null(factors$rms), NA, factors$rms)
crms <- ifelse(is.null(factors$crms), NA, factors$crms)
bic <- ifelse(is.null(factors$BIC), NA, factors$BIC)
tli <- ifelse(is.null(factors$TLI), NA, factors$TLI)
rez <- rbind(
rez,
.data_frame(
n = n,
Fit = factors$fit.off,
TLI = tli,
RMSEA = rmsea,
RMSR = rmsr,
CRMS = crms,
BIC = bic
)
)
}
# For fit indices that constantly increase / decrease, we need to find
# an "elbow"/"knee". Here we take the first value that reaches 90 percent
# of the range between the max and the min (when 'threshold = 0.1').
# Fit
if (all(is.na(rez$Fit))) {
fit_off <- NA
} else {
target <- max(rez$Fit, na.rm = TRUE) - threshold * diff(range(rez$Fit, na.rm = TRUE))
fit_off <- rez[!is.na(rez$Fit) & rez$Fit >= target, "n"][1]
}
# TLI
if (all(is.na(rez$TLI))) {
TLI <- NA
} else {
target <- max(rez$TLI, na.rm = TRUE) - threshold * diff(range(rez$TLI, na.rm = TRUE))
TLI <- rez[!is.na(rez$TLI) & rez$TLI >= target, "n"][1]
}
# RMSEA
if (all(is.na(rez$RMSEA))) {
RMSEA <- NA
} else {
target <- min(rez$RMSEA, na.rm = TRUE) + threshold * diff(range(rez$RMSEA, na.rm = TRUE))
RMSEA <- rez[!is.na(rez$RMSEA) & rez$RMSEA <= target, "n"][1]
}
# RMSR
if (all(is.na(rez$RMSR))) {
RMSR <- NA
} else {
target <- min(rez$RMSR, na.rm = TRUE) + threshold * diff(range(rez$RMSR, na.rm = TRUE))
RMSR <- rez[!is.na(rez$RMSR) & rez$RMSR <= target, "n"][1]
}
# CRMS
if (all(is.na(rez$CRMS))) {
CRMS <- NA
} else {
target <- min(rez$CRMS, na.rm = TRUE) + threshold * diff(range(rez$CRMS, na.rm = TRUE))
CRMS <- rez[!is.na(rez$CRMS) & rez$CRMS <= target, "n"][1]
}
# BIC (this is a penalized method so we can just take the one that minimizes it)
BayIC <- ifelse(all(is.na(rez$BIC)), NA, rez[!is.na(rez$BIC) & rez$BIC == min(rez$BIC, na.rm = TRUE), "n"])
.data_frame(
n_Factors = c(fit_off, TLI, RMSEA, RMSR, CRMS, BayIC),
Method = c("Fit_off", "TLI", "RMSEA", "RMSR", "CRMS", "BIC"),
Family = c("Fit", "Fit", "Fit", "Fit", "Fit", "Fit")
)
}
# PCDimension ------------------------
#' @keywords internal
.n_factors_PCDimension <- function(x = NULL, type = "PCA") {
# This package is a strict dependency of PCDimension so if users have the
# former they should have it
insight::check_if_installed(c("ClassDiscovery", "PCDimension"))
# Only applies to PCA with full data
if (tolower(type) %in% c("fa", "factor", "efa") || !is.data.frame(x)) {
return(data.frame())
}
# Randomization-Based Methods
rez_rnd <- PCDimension::rndLambdaF(x)
# Broken-Stick
spca <- ClassDiscovery::SamplePCA(t(x))
lambda <- spca@variances[1:(ncol(x) - 1)]
rez_bokenstick <- PCDimension::bsDimension(lambda)
# Auer-Gervini
ag <- PCDimension::AuerGervini(spca)
agfuns <- list(
twice = PCDimension::agDimTwiceMean,
specc = PCDimension::agDimSpectral,
km = PCDimension::agDimKmeans,
km3 = PCDimension::agDimKmeans3,
# tt=PCDimension::agDimTtest, # known to overestimate
# cpm=PCDimension::makeAgCpmFun("Exponential"), # known to overestimate
tt2 = PCDimension::agDimTtest2,
cpt = PCDimension::agDimCPT
)
rez_ag <- PCDimension::compareAgDimMethods(ag, agfuns)
.data_frame(
n_Factors = as.numeric(c(rez_rnd, rez_bokenstick, rez_ag)),
Method = c(
"Random (lambda)", "Random (F)", "Broken-Stick", "Auer-Gervini (twice)",
"Auer-Gervini (spectral)", "Auer-Gervini (kmeans-2)", "AuerGervini (kmeans-3)",
"Auer-Gervini (T)", "AuerGervini (CPT)"
),
Family = "PCDimension"
)
}
# Re-implementation of nBentler in nFactors ------------------------
#' @keywords internal
.nBentler <- function(x,
N,
model = model,
log = TRUE,
alpha = 0.05,
cor = TRUE,
details = TRUE,
...) {
insight::check_if_installed("nFactors")
lambda <- nFactors::eigenComputes(x, cor = cor, model = model, ...)
if (any(lambda < 0)) {
insight::format_error(
"These indices are only valid with a principal component solution. So, only positive eigenvalues are permitted."
)
}
minPar <- c(min(lambda) - abs(min(lambda)) + 0.001, 0.001)
maxPar <- c(max(lambda), stats::lm(lambda ~ I(rev(seq_along(lambda))))$coef[2])
n <- N
significance <- alpha
min.k <- 3
LRT <- .data_frame(
q = numeric(length(lambda) - min.k), k = numeric(length(lambda) - min.k),
LRT = numeric(length(lambda) - min.k), a = numeric(length(lambda) - min.k),
b = numeric(length(lambda) - min.k),
p = numeric(length(lambda) - min.k),
convergence = numeric(length(lambda) - min.k)
)
bentler.n <- 0
for (i in 1:(length(lambda) - min.k)) {
temp <-
nFactors::bentlerParameters(
x = lambda,
N = n,
nFactors = i,
log = log,
cor = cor,
minPar = minPar,
maxPar = maxPar,
graphic = FALSE
)
LRT[i, 3] <- temp$lrt
LRT[i, 4] <- ifelse(is.null(temp$coef[1]), NA, temp$coef[1])
LRT[i, 5] <- ifelse(is.null(temp$coef[2]), NA, temp$coef[2])
LRT[i, 6] <- ifelse(is.null(temp$p.value), NA, temp$p.value)
LRT[i, 7] <- ifelse(is.null(temp$convergence), NA, temp$convergence)
LRT[i, 2] <- i
LRT[i, 1] <- length(lambda) - i
}
# LRT <- LRT[order(LRT[,1],decreasing = TRUE),]
for (i in 1:(length(lambda) - min.k)) {
if (i == 1) bentler.n <- bentler.n + as.numeric(LRT$p[i] <= significance)
if (i > 1 && LRT$p[i - 1] <= 0.05) {
bentler.n <- bentler.n + as.numeric(LRT$p[i] <= significance)
}
}
if (bentler.n == 0) {
bentler.n <- length(lambda)
}
if (isTRUE(details)) {
details <- LRT
} else {
details <- NULL
}
res <- list(detail = details, nFactors = bentler.n)
class(res) <- c("nFactors", "list")
res
}
|