1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
|
#' Principal Component Analysis (PCA) and Factor Analysis (FA)
#'
#' The functions `principal_components()` and `factor_analysis()` can
#' be used to perform a principal component analysis (PCA) or a factor analysis
#' (FA). They return the loadings as a data frame, and various methods and
#' functions are available to access / display other information (see the
#' Details section).
#'
#' @param x A data frame or a statistical model.
#' @param n Number of components to extract. If `n="all"`, then `n` is set as
#' the number of variables minus 1 (`ncol(x)-1`). If `n="auto"` (default) or
#' `n=NULL`, the number of components is selected through [`n_factors()`] resp.
#' [`n_components()`]. Else, if `n` is a number, `n` components are extracted.
#' If `n` exceeds number of variables in the data, it is automatically set to
#' the maximum number (i.e. `ncol(x)`). In [`reduce_parameters()`], can also
#' be `"max"`, in which case it will select all the components that are
#' maximally pseudo-loaded (i.e., correlated) by at least one variable.
#' @param rotation If not `"none"`, the PCA / FA will be computed using the
#' **psych** package. Possible options include `"varimax"`,
#' `"quartimax"`, `"promax"`, `"oblimin"`, `"simplimax"`,
#' or `"cluster"` (and more). See [`psych::fa()`] for details.
#' @param sparse Whether to compute sparse PCA (SPCA, using [`sparsepca::spca()`]).
#' SPCA attempts to find sparse loadings (with few nonzero values), which improves
#' interpretability and avoids overfitting. Can be `TRUE` or `"robust"` (see
#' [`sparsepca::robspca()`]).
#' @param sort Sort the loadings.
#' @param threshold A value between 0 and 1 indicates which (absolute) values
#' from the loadings should be removed. An integer higher than 1 indicates the
#' n strongest loadings to retain. Can also be `"max"`, in which case it
#' will only display the maximum loading per variable (the most simple
#' structure).
#' @param standardize A logical value indicating whether the variables should be
#' standardized (centered and scaled) to have unit variance before the
#' analysis (in general, such scaling is advisable).
#' @param object An object of class `parameters_pca` or `parameters_efa`
#' @param newdata An optional data frame in which to look for variables with
#' which to predict. If omitted, the fitted values are used.
#' @param names Optional character vector to name columns of the returned data
#' frame.
#' @param keep_na Logical, if `TRUE`, predictions also return observations
#' with missing values from the original data, hence the number of rows of
#' predicted data and original data is equal.
#' @param ... Arguments passed to or from other methods.
#' @param pca_results The output of the `principal_components()` function.
#' @param digits Argument for `print()`, indicates the number of digits
#' (rounding) to be used.
#' @param labels Argument for `print()`, character vector of same length as
#' columns in `x`. If provided, adds an additional column with the labels.
#' @param verbose Toggle warnings.
#' @inheritParams n_factors
#'
#' @details
#'
#' ## Methods and Utilities
#' - [`n_components()`] and [`n_factors()`] automatically estimates the optimal
#' number of dimensions to retain.
#'
#' - [`performance::check_factorstructure()`] checks the suitability of the
#' data for factor analysis using the sphericity (see
#' [`performance::check_sphericity_bartlett()`]) and the KMO (see
#' [`performance::check_kmo()`]) measure.
#'
#' - [`performance::check_itemscale()`] computes various measures of internal
#' consistencies applied to the (sub)scales (i.e., components) extracted from
#' the PCA.
#'
#' - Running `summary()` returns information related to each component/factor,
#' such as the explained variance and the Eivenvalues.
#'
#' - Running [`get_scores()`] computes scores for each subscale.
#'
#' - Running [`closest_component()`] will return a numeric vector with the
#' assigned component index for each column from the original data frame.
#'
#' - Running [`rotated_data()`] will return the rotated data, including missing
#' values, so it matches the original data frame.
#'
#' - Running
#' [`plot()`](https://easystats.github.io/see/articles/parameters.html#principal-component-analysis)
#' visually displays the loadings (that requires the
#' [**see**-package](https://easystats.github.io/see/) to work).
#'
#' ## Complexity
#' Complexity represents the number of latent components needed to account
#' for the observed variables. Whereas a perfect simple structure solution
#' has a complexity of 1 in that each item would only load on one factor,
#' a solution with evenly distributed items has a complexity greater than 1
#' (_Hofman, 1978; Pettersson and Turkheimer, 2010_).
#'
#' ## Uniqueness
#' Uniqueness represents the variance that is 'unique' to the variable and
#' not shared with other variables. It is equal to `1 – communality`
#' (variance that is shared with other variables). A uniqueness of `0.20`
#' suggests that `20%` or that variable's variance is not shared with other
#' variables in the overall factor model. The greater 'uniqueness' the lower
#' the relevance of the variable in the factor model.
#'
#' ## MSA
#' MSA represents the Kaiser-Meyer-Olkin Measure of Sampling Adequacy
#' (_Kaiser and Rice, 1974_) for each item. It indicates whether there is
#' enough data for each factor give reliable results for the PCA. The value
#' should be > 0.6, and desirable values are > 0.8 (_Tabachnick and Fidell, 2013_).
#'
#' ## PCA or FA?
#' There is a simplified rule of thumb that may help do decide whether to run
#' a factor analysis or a principal component analysis:
#'
#' - Run *factor analysis* if you assume or wish to test a theoretical model of
#' *latent factors* causing observed variables.
#'
#' - Run *principal component analysis* If you want to simply *reduce* your
#' correlated observed variables to a smaller set of important independent
#' composite variables.
#'
#' (Source: [CrossValidated](https://stats.stackexchange.com/q/1576/54740))
#'
#' ## Computing Item Scores
#' Use [`get_scores()`] to compute scores for the "subscales" represented by the
#' extracted principal components. `get_scores()` takes the results from
#' `principal_components()` and extracts the variables for each component found
#' by the PCA. Then, for each of these "subscales", raw means are calculated
#' (which equals adding up the single items and dividing by the number of items).
#' This results in a sum score for each component from the PCA, which is on the
#' same scale as the original, single items that were used to compute the PCA.
#' One can also use `predict()` to back-predict scores for each component,
#' to which one can provide `newdata` or a vector of `names` for the components.
#'
#' ## Explained Variance and Eingenvalues
#' Use `summary()` to get the Eigenvalues and the explained variance for each
#' extracted component. The eigenvectors and eigenvalues represent the "core"
#' of a PCA: The eigenvectors (the principal components) determine the
#' directions of the new feature space, and the eigenvalues determine their
#' magnitude. In other words, the eigenvalues explain the variance of the
#' data along the new feature axes.
#'
#' @examplesIf require("nFactors", quietly = TRUE) && require("sparsepca", quietly = TRUE) && require("psych", quietly = TRUE)
#' library(parameters)
#'
#' \donttest{
#' # Principal Component Analysis (PCA) -------------------
#' principal_components(mtcars[, 1:7], n = "all", threshold = 0.2)
#'
#' # Automated number of components
#' principal_components(mtcars[, 1:4], n = "auto")
#'
#' # labels can be useful if variable names are not self-explanatory
#' print(
#' principal_components(mtcars[, 1:4], n = "auto"),
#' labels = c(
#' "Miles/(US) gallon",
#' "Number of cylinders",
#' "Displacement (cu.in.)",
#' "Gross horsepower"
#' )
#' )
#'
#' # Sparse PCA
#' principal_components(mtcars[, 1:7], n = 4, sparse = TRUE)
#' principal_components(mtcars[, 1:7], n = 4, sparse = "robust")
#'
#' # Rotated PCA
#' principal_components(mtcars[, 1:7],
#' n = 2, rotation = "oblimin",
#' threshold = "max", sort = TRUE
#' )
#' principal_components(mtcars[, 1:7], n = 2, threshold = 2, sort = TRUE)
#'
#' pca <- principal_components(mtcars[, 1:5], n = 2, rotation = "varimax")
#' pca # Print loadings
#' summary(pca) # Print information about the factors
#' predict(pca, names = c("Component1", "Component2")) # Back-predict scores
#'
#' # which variables from the original data belong to which extracted component?
#' closest_component(pca)
#' }
#'
#' # Factor Analysis (FA) ------------------------
#'
#' factor_analysis(mtcars[, 1:7], n = "all", threshold = 0.2)
#' factor_analysis(mtcars[, 1:7], n = 2, rotation = "oblimin", threshold = "max", sort = TRUE)
#' factor_analysis(mtcars[, 1:7], n = 2, threshold = 2, sort = TRUE)
#'
#' efa <- factor_analysis(mtcars[, 1:5], n = 2)
#' summary(efa)
#' predict(efa, verbose = FALSE)
#'
#' \donttest{
#' # Automated number of components
#' factor_analysis(mtcars[, 1:4], n = "auto")
#' }
#' @return A data frame of loadings.
#'
#' @references
#' - Kaiser, H.F. and Rice. J. (1974). Little jiffy, mark iv. Educational
#' and Psychological Measurement, 34(1):111–117
#'
#' - Hofmann, R. (1978). Complexity and simplicity as objective indices
#' descriptive of factor solutions. Multivariate Behavioral Research, 13:2,
#' 247-250, \doi{10.1207/s15327906mbr1302_9}
#'
#' - Pettersson, E., & Turkheimer, E. (2010). Item selection, evaluation,
#' and simple structure in personality data. Journal of research in
#' personality, 44(4), 407-420, \doi{10.1016/j.jrp.2010.03.002}
#'
#' - Tabachnick, B. G., and Fidell, L. S. (2013). Using multivariate
#' statistics (6th ed.). Boston: Pearson Education.
#'
#' @export
principal_components <- function(x,
n = "auto",
rotation = "none",
sparse = FALSE,
sort = FALSE,
threshold = NULL,
standardize = TRUE,
...) {
UseMethod("principal_components")
}
#' @rdname principal_components
#' @export
rotated_data <- function(pca_results, verbose = TRUE) {
original_data <- attributes(pca_results)$dataset
rotated_matrix <- insight::get_predicted(attributes(pca_results)$model)
out <- NULL
if (is.null(original_data) || is.null(rotated_matrix)) {
if (verbose) {
insight::format_warning("Either the original or the rotated data could not be retrieved.")
}
return(NULL)
}
compl_cases <- attributes(pca_results)$complete_cases
if (is.null(compl_cases) && nrow(original_data) != nrow(rotated_matrix)) {
if (verbose) {
insight::format_warning("Could not retrieve information about missing data.")
}
return(NULL)
}
original_data$.parameters_merge_id <- seq_len(nrow(original_data))
rotated_matrix$.parameters_merge_id <- (seq_len(nrow(original_data)))[compl_cases]
out <- merge(original_data, rotated_matrix, by = ".parameters_merge_id", all = TRUE, sort = FALSE)
out$.parameters_merge_id <- NULL
out
}
#' @export
principal_components.data.frame <- function(x,
n = "auto",
rotation = "none",
sparse = FALSE,
sort = FALSE,
threshold = NULL,
standardize = TRUE,
...) {
# save name of data set
data_name <- insight::safe_deparse_symbol(substitute(x))
# original data
original_data <- x
# remove missing
x <- stats::na.omit(x)
# Select numeric only
x <- x[vapply(x, is.numeric, TRUE)]
# N factors
n <- .get_n_factors(x, n = n, type = "PCA", rotation = rotation)
# Catch and compute Rotated PCA
if (rotation != "none") {
if (sparse) {
insight::format_error("Sparse PCA is currently incompatible with rotation. Use either `sparse=TRUE` or `rotation`.")
}
pca_loadings <- .pca_rotate(
x,
n,
rotation = rotation,
sort = sort,
threshold = threshold,
original_data = original_data,
...
)
attr(pca_loadings, "data") <- data_name
return(pca_loadings)
}
# Compute PCA
if (is.character(sparse) && sparse == "robust") {
# Robust sparse PCA
insight::check_if_installed("sparsepca")
model <- sparsepca::robspca(
x,
center = standardize,
scale = standardize,
verbose = FALSE,
...
)
model$rotation <- model$loadings
row.names(model$rotation) <- names(x)
model$x <- model$scores
} else if (isTRUE(sparse)) {
# Sparse PCA
insight::check_if_installed("sparsepca")
model <- sparsepca::spca(
x,
center = standardize,
scale = standardize,
verbose = FALSE,
...
)
model$rotation <- stats::setNames(model$loadings, names(x))
row.names(model$rotation) <- names(x)
model$x <- model$scores
} else {
# Normal PCA
model <- stats::prcomp(x,
retx = TRUE,
center = standardize,
scale. = standardize,
...
)
}
# Re-add centers and scales
# if (standardize) {
# model$center <- attributes(x)$center
# model$scale <- attributes(x)$scale
# }
# Summary (cumulative variance etc.)
eigenvalues <- model$sdev^2
data_summary <- .data_frame(
Component = sprintf("PC%i", seq_len(length(model$sdev))),
Eigenvalues = eigenvalues,
Variance = eigenvalues / sum(eigenvalues),
Variance_Cumulative = cumsum(eigenvalues / sum(eigenvalues))
)
data_summary$Variance_Proportion <- data_summary$Variance / sum(data_summary$Variance)
# Sometimes if too large n is requested the returned number is lower, so we
# have to adjust n to the new number
n <- pmin(sum(!is.na(model$sdev)), n)
model$sdev <- model$sdev[1:n]
model$rotation <- model$rotation[, 1:n, drop = FALSE]
model$x <- model$x[, 1:n, drop = FALSE]
data_summary <- data_summary[1:n, , drop = FALSE]
# Compute loadings
if (length(model$sdev) > 1) {
pca_loadings <- as.data.frame(model$rotation %*% diag(model$sdev))
} else {
pca_loadings <- as.data.frame(model$rotation %*% model$sdev)
}
names(pca_loadings) <- data_summary$Component
# Format
pca_loadings <- cbind(data.frame(Variable = row.names(pca_loadings)), pca_loadings)
row.names(pca_loadings) <- NULL
# Add information
loading_cols <- 2:(n + 1)
pca_loadings$Complexity <- (apply(pca_loadings[, loading_cols, drop = FALSE], 1, function(x) sum(x^2)))^2 /
apply(pca_loadings[, loading_cols, drop = FALSE], 1, function(x) sum(x^4))
# Add attributes
attr(pca_loadings, "summary") <- data_summary
attr(pca_loadings, "model") <- model
attr(pca_loadings, "rotation") <- "none"
attr(pca_loadings, "scores") <- model$x
attr(pca_loadings, "standardize") <- standardize
attr(pca_loadings, "additional_arguments") <- list(...)
attr(pca_loadings, "n") <- n
attr(pca_loadings, "type") <- "prcomp"
attr(pca_loadings, "loadings_columns") <- loading_cols
attr(pca_loadings, "complete_cases") <- stats::complete.cases(original_data)
# Sorting
if (isTRUE(sort)) {
pca_loadings <- .sort_loadings(pca_loadings)
}
# Replace by NA all cells below threshold
if (!is.null(threshold)) {
pca_loadings <- .filter_loadings(pca_loadings, threshold = threshold)
}
# Add some more attributes
attr(pca_loadings, "loadings_long") <- .long_loadings(pca_loadings, threshold = threshold)
# here we match the original columns in the data set with the assigned components
# for each variable, so we know which column in the original data set belongs
# to which extracted component...
attr(pca_loadings, "closest_component") <- .closest_component(
pca_loadings,
loadings_columns = loading_cols,
variable_names = colnames(x)
)
attr(pca_loadings, "data") <- data_name
attr(pca_loadings, "dataset") <- original_data
# add class-attribute for printing
class(pca_loadings) <- unique(c("parameters_pca", "see_parameters_pca", class(pca_loadings)))
pca_loadings
}
#' @keywords internal
.get_n_factors <- function(x,
n = NULL,
type = "PCA",
rotation = "varimax",
...) {
# N factors
if (is.null(n) || n == "auto") {
n <- as.numeric(n_factors(x, type = type, rotation = rotation, ...))
} else if (n == "all") {
n <- ncol(x) - 1
} else if (n >= ncol(x)) {
n <- ncol(x)
} else if (n < 1) {
n <- 1
}
n
}
#' @keywords internal
.pca_rotate <- function(x,
n,
rotation,
sort = FALSE,
threshold = NULL,
original_data = NULL,
...) {
if (!(rotation %in% c("varimax", "quartimax", "promax", "oblimin", "simplimax", "cluster", "none"))) {
insight::format_error("`rotation` must be one of \"varimax\", \"quartimax\", \"promax\", \"oblimin\", \"simplimax\", \"cluster\" or \"none\".")
}
if (!inherits(x, c("prcomp", "data.frame"))) {
insight::format_error("`x` must be of class `prcomp` or a data frame.")
}
if (!inherits(x, "data.frame") && rotation != "varimax") {
insight::format_error(sprintf("`x` must be a data frame for `%s`-rotation.", rotation))
}
# rotate loadings
insight::check_if_installed("psych", reason = sprintf("`%s`-rotation.", rotation))
pca <- psych::principal(x, nfactors = n, rotate = rotation, ...)
msa <- psych::KMO(x)
attr(pca, "MSA") <- msa$MSAi
out <- model_parameters(pca, sort = sort, threshold = threshold)
attr(out, "dataset") <- original_data
attr(out, "complete_cases") <- stats::complete.cases(original_data)
out
}
|