1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
|
#' @title Print model parameters
#' @name print.parameters_model
#'
#' @description A `print()`-method for objects from [`model_parameters()`][model_parameters].
#'
#' @param x,object An object returned by [`model_parameters()`][model_parameters].
#' @param split_components Logical, if `TRUE` (default), For models with
#' multiple components (zero-inflation, smooth terms, ...), each component is
#' printed in a separate table. If `FALSE`, model parameters are printed
#' in a single table and a `Component` column is added to the output.
#' @param select Determines which columns and and which layout columns are
#' printed. There are three options for this argument:
#'
#' * **Selecting columns by name or index**
#'
#' `select` can be a character vector (or numeric index) of column names that
#' should be printed, where columns are extracted from the data frame returned
#' by `model_parameters()` and related functions.
#'
#' There are two pre-defined options for selecting columns:
#' `select = "minimal"` prints coefficients, confidence intervals and
#' p-values, while `select = "short"` prints coefficients, standard errors and
#' p-values.
#'
#' * **A string expression with layout pattern**
#'
#' `select` is a string with "tokens" enclosed in braces. These tokens will be
#' replaced by their associated columns, where the selected columns will be
#' collapsed into one column. Following tokens are replaced by the related
#' coefficients or statistics: `{estimate}`, `{se}`, `{ci}` (or `{ci_low}` and
#' `{ci_high}`), `{p}` and `{stars}`. The token `{ci}` will be replaced by
#' `{ci_low}, {ci_high}`. Example: `select = "{estimate}{stars} ({ci})"`
#'
#' It is possible to create multiple columns as well. A `|` separates values
#' into new cells/columns. Example: `select = "{estimate} ({ci})|{p}"`.
#'
#' If `format = "html"`, a `<br>` inserts a line break inside a cell. See
#' 'Examples'.
#'
#' * **A string indicating a pre-defined layout**
#'
#' `select` can be one of the following string values, to create one of the
#' following pre-defined column layouts:
#'
#' - `"ci"`: Estimates and confidence intervals, no asterisks for p-values.
#' This is equivalent to `select = "{estimate} ({ci})"`.
#' - `"se"`: Estimates and standard errors, no asterisks for p-values. This is
#' equivalent to `select = "{estimate} ({se})"`.
#' - `"ci_p"`: Estimates, confidence intervals and asterisks for p-values. This
#' is equivalent to `select = "{estimate}{stars} ({ci})"`.
#' - `"se_p"`: Estimates, standard errors and asterisks for p-values. This is
#' equivalent to `select = "{estimate}{stars} ({se})"`..
#' - `"ci_p2"`: Estimates, confidence intervals and numeric p-values, in two
#' columns. This is equivalent to `select = "{estimate} ({ci})|{p}"`.
#' - `"se_p2"`: Estimate, standard errors and numeric p-values, in two columns.
#' This is equivalent to `select = "{estimate} ({se})|{p}"`.
#'
#' For `model_parameters()`, glue-like syntax is still experimental in the
#' case of more complex models (like mixed models) and may not return expected
#' results.
#' @param show_sigma Logical, if `TRUE`, adds information about the residual
#' standard deviation.
#' @param show_formula Logical, if `TRUE`, adds the model formula to the output.
#' @param caption Table caption as string. If `NULL`, depending on the model,
#' either a default caption or no table caption is printed. Use `caption = ""`
#' to suppress the table caption.
#' @param footer Can either be `FALSE` or an empty string (i.e. `""`) to
#' suppress the footer, `NULL` to print the default footer, or a string. The
#' latter will combine the string value with the default footer.
#' @param footer_digits Number of decimal places for values in the footer summary.
#' @param groups Named list, can be used to group parameters in the printed output.
#' List elements may either be character vectors that match the name of those
#' parameters that belong to one group, or list elements can be row numbers
#' of those parameter rows that should belong to one group. The names of the
#' list elements will be used as group names, which will be inserted as "header
#' row". A possible use case might be to emphasize focal predictors and control
#' variables, see 'Examples'. Parameters will be re-ordered according to the
#' order used in `groups`, while all non-matching parameters will be added
#' to the end.
#' @param column_width Width of table columns. Can be either `NULL`, a named
#' numeric vector, or `"fixed"`. If `NULL`, the width for each table column is
#' adjusted to the minimum required width. If a named numeric vector, value
#' names are matched against column names, and for each match, the specified
#' width is used. If `"fixed"`, and table is split into multiple components,
#' columns across all table components are adjusted to have the same width.
#' @param digits,ci_digits,p_digits Number of digits for rounding or
#' significant figures. May also be `"signif"` to return significant
#' figures or `"scientific"` to return scientific notation. Control the
#' number of digits by adding the value as suffix, e.g. `digits = "scientific4"`
#' to have scientific notation with 4 decimal places, or `digits = "signif5"`
#' for 5 significant figures (see also [signif()]).
#' @param pretty_names Can be `TRUE`, which will return "pretty" (i.e. more human
#' readable) parameter names. Or `"labels"`, in which case value and variable
#' labels will be used as parameters names. The latter only works for "labelled"
#' data, i.e. if the data used to fit the model had `"label"` and `"labels"`
#' attributes. See also section _Global Options to Customize Messages when Printing_.
#' @param include_reference Logical, if `TRUE`, the reference level of factors will
#' be added to the parameters table. This is only relevant for models with
#' categorical predictors. The coefficient for the reference level is always
#' `0` (except when `exponentiate = TRUE`, then the coefficient will be `1`),
#' so this is just for completeness.
#' @param ... Arguments passed down to [`format.parameters_model()`],
#' [`insight::format_table()`] and [`insight::export_table()`]
#' @inheritParams insight::format_table
#' @inheritParams compare_parameters
#' @inheritParams display.parameters_model
#'
#' @inheritSection format_parameters Interpretation of Interaction Terms
#' @inheritSection model_parameters Labeling the Degrees of Freedom
#'
#' @section Global Options to Customize Messages and Tables when Printing:
#' The `verbose` argument can be used to display or silence messages and
#' warnings for the different functions in the **parameters** package. However,
#' some messages providing additional information can be displayed or suppressed
#' using `options()`:
#'
#' - `parameters_info`: `options(parameters_info = TRUE)` will override the
#' `include_info` argument in `model_parameters()` and always show the model
#' summary for non-mixed models.
#'
#' - `parameters_mixed_info`: `options(parameters_mixed_info = TRUE)` will
#' override the `include_info` argument in `model_parameters()` for mixed
#' models, and will then always show the model summary.
#'
#' - `parameters_cimethod`: `options(parameters_cimethod = TRUE)` will show the
#' additional information about the approximation method used to calculate
#' confidence intervals and p-values. Set to `FALSE` to hide this message when
#' printing `model_parameters()` objects.
#'
#' - `parameters_exponentiate`: `options(parameters_exponentiate = TRUE)` will
#' show the additional information on how to interpret coefficients of models
#' with log-transformed response variables or with log-/logit-links when the
#' `exponentiate` argument in `model_parameters()` is not `TRUE`. Set this option
#' to `FALSE` to hide this message when printing `model_parameters()` objects.
#'
#' There are further options that can be used to modify the default behaviour
#' for printed outputs:
#'
#' - `parameters_labels`: `options(parameters_labels = TRUE)` will use variable
#' and value labels for pretty names, if data is labelled. If no labels
#' available, default pretty names are used.
#'
#' - `parameters_interaction`: `options(parameters_interaction = <character>)`
#' will replace the interaction mark (by default, `*`) with the related character.
#'
#' - `parameters_select`: `options(parameters_select = <value>)` will set the
#' default for the `select` argument. See argument's documentation for available
#' options.
#'
#' - `easystats_table_width`: `options(easystats_table_width = <value>)` will
#' set the default width for tables in text-format, i.e. for most of the outputs
#' printed to console. If not specified, tables will be adjusted to the current
#' available width, e.g. of the of the console (or any other source for textual
#' output, like markdown files). The argument `table_width` can also be used in
#' most `print()` methods to specify the table width as desired.
#'
#' - `easystats_html_engine`: `options(easystats_html_engine = "gt")` will set
#' the default HTML engine for tables to `gt`, i.e. the _gt_ package is used to
#' create HTML tables. If set to `tt`, the _tinytable_ package is used.
#'
#' - `insight_use_symbols`: `options(insight_use_symbols = TRUE)` will try to
#' print unicode-chars for symbols as column names, wherever possible (e.g.,
#' \ifelse{html}{\out{ω}}{\eqn{\omega}} instead of `Omega`).
#'
#' @details `summary()` is a convenient shortcut for
#' `print(object, select = "minimal", show_sigma = TRUE, show_formula = TRUE)`.
#'
#' @return Invisibly returns the original input object.
#'
#' @seealso See also [`display()`][display.parameters_model].
#'
#' @examplesIf require("gt", quietly = TRUE) && require("glmmTMB", quietly = TRUE)
#' \donttest{
#' library(parameters)
#' model <- glmmTMB::glmmTMB(
#' count ~ spp + mined + (1 | site),
#' ziformula = ~mined,
#' family = poisson(),
#' data = Salamanders
#' )
#' mp <- model_parameters(model)
#'
#' print(mp, pretty_names = FALSE)
#'
#' print(mp, split_components = FALSE)
#'
#' print(mp, select = c("Parameter", "Coefficient", "SE"))
#'
#' print(mp, select = "minimal")
#'
#'
#' # group parameters ------
#'
#' data(iris)
#' model <- lm(
#' Sepal.Width ~ Sepal.Length + Species + Petal.Length,
#' data = iris
#' )
#' # don't select "Intercept" parameter
#' mp <- model_parameters(model, parameters = "^(?!\\(Intercept)")
#' groups <- list(
#' "Focal Predictors" = c("Speciesversicolor", "Speciesvirginica"),
#' "Controls" = c("Sepal.Length", "Petal.Length")
#' )
#' print(mp, groups = groups)
#'
#' # or use row indices
#' print(mp, groups = list(
#' "Focal Predictors" = c(1, 4),
#' "Controls" = c(2, 3)
#' ))
#'
#' # only show coefficients, CI and p,
#' # put non-matched parameters to the end
#'
#' data(mtcars)
#' mtcars$cyl <- as.factor(mtcars$cyl)
#' mtcars$gear <- as.factor(mtcars$gear)
#' model <- lm(mpg ~ hp + gear * vs + cyl + drat, data = mtcars)
#'
#' # don't select "Intercept" parameter
#' mp <- model_parameters(model, parameters = "^(?!\\(Intercept)")
#' print(mp, groups = list(
#' "Engine" = c("cyl6", "cyl8", "vs", "hp"),
#' "Interactions" = c("gear4:vs", "gear5:vs")
#' ))
#' }
#'
#'
#' # custom column layouts ------
#'
#' data(iris)
#' lm1 <- lm(Sepal.Length ~ Species, data = iris)
#' lm2 <- lm(Sepal.Length ~ Species + Petal.Length, data = iris)
#'
#' # custom style
#' result <- compare_parameters(lm1, lm2, select = "{estimate}{stars} ({se})")
#' print(result)
#'
#' \donttest{
#' # custom style, in HTML
#' result <- compare_parameters(lm1, lm2, select = "{estimate}<br>({se})|{p}")
#' print_html(result)
#' }
#' @export
print.parameters_model <- function(x,
pretty_names = TRUE,
split_components = TRUE,
select = NULL,
caption = NULL,
footer = NULL,
digits = 2,
ci_digits = digits,
p_digits = 3,
footer_digits = 3,
show_sigma = FALSE,
show_formula = FALSE,
zap_small = FALSE,
groups = NULL,
column_width = NULL,
ci_brackets = c("[", "]"),
include_reference = FALSE,
...) {
# save original input
orig_x <- x
# check options ---------------
# check if pretty names should be replaced by value labels
# (if we have labelled data)
if (isTRUE(getOption("parameters_labels", FALSE)) || identical(pretty_names, "labels")) {
attr(x, "pretty_names") <- attr(x, "pretty_labels", exact = TRUE)
pretty_names <- TRUE
}
# select which columns to print
if (is.null(select)) {
select <- getOption("parameters_select")
}
# check if user supplied digits attributes
if (missing(digits)) {
digits <- .additional_arguments(x, "digits", digits)
}
if (missing(ci_digits)) {
ci_digits <- .additional_arguments(x, "ci_digits", digits)
}
if (missing(p_digits)) {
p_digits <- .additional_arguments(x, "p_digits", p_digits)
}
if (missing(footer_digits)) {
footer_digits <- .additional_arguments(x, "footer_digits", footer_digits)
}
# table caption
table_caption <- .print_caption(x, caption, format = "text")
# main table
formatted_table <- .print_core(
x = x,
pretty_names = pretty_names,
split_components = split_components,
select = select,
digits = digits,
ci_digits = ci_digits,
p_digits = p_digits,
zap_small = zap_small,
ci_width = "auto",
ci_brackets = ci_brackets,
format = "text",
groups = groups,
include_reference = include_reference,
...
)
# if we have multiple components, we can align colum width across components here
if (!is.null(column_width) && all(column_width == "fixed") && is.list(formatted_table)) {
column_width <- .find_min_colwidth(formatted_table)
}
# footer
footer_stats <- .print_footer(
x,
digits = footer_digits,
show_sigma = show_sigma,
show_formula = show_formula
)
# check if footer should be printed at all. can be FALSE, or "" to suppress footer
if (isFALSE(footer)) {
footer <- ""
}
if (!identical(footer, "")) {
if (is.null(footer)) {
footer <- footer_stats
} else {
footer <- paste0("\n", footer, "\n", footer_stats)
}
}
# get attributes
verbose <- .additional_arguments(x, "verbose", TRUE)
# print main table
cat(insight::export_table(
formatted_table,
format = "text",
caption = table_caption,
footer = footer,
width = column_width,
...
))
# inform about CI and df approx.
if (isTRUE(verbose)) {
.print_footer_cimethod(x)
.print_footer_exp(x)
}
invisible(orig_x)
}
#' @rdname print.parameters_model
#' @export
summary.parameters_model <- function(object, ...) {
print(
x = object,
select = "minimal",
show_sigma = TRUE,
show_formula = TRUE,
...
)
}
#' @export
print.parameters_simulate <- print.parameters_model
#' @export
print.parameters_brms_meta <- print.parameters_model
# Random effects ------------------
#' @export
print.parameters_coef <- function(x, ...) {
cat(insight::export_table(format(x, ...), ...))
}
#' @export
print.parameters_random <- function(x, digits = 2, ...) {
.print_random_parameters(x, digits = digits)
invisible(x)
}
# helper --------------------
.print_core <- function(x,
pretty_names = TRUE,
split_components = TRUE,
select = NULL,
digits = 2,
ci_digits = digits,
p_digits = 3,
zap_small = FALSE,
ci_width = "auto",
ci_brackets = TRUE,
format = "text",
groups = NULL,
include_reference = FALSE,
...) {
format(
x,
pretty_names = pretty_names,
split_components = split_components,
select = select,
digits = digits,
ci_digits = ci_digits,
p_digits = p_digits,
ci_width = ci_width,
ci_brackets = ci_brackets,
zap_small = zap_small,
format = format,
groups = groups,
include_reference = include_reference,
...
)
}
.print_footer <- function(x,
digits = 3,
show_sigma = FALSE,
show_formula = FALSE,
format = "text") {
# get attributes
model_sigma <- attributes(x)$sigma
show_summary <- isTRUE(attributes(x)$show_summary)
verbose <- .additional_arguments(x, "verbose", TRUE)
# override defaults. if argument "summary" is called in "model_parameters()",
# this overrides the defaults...
show_sigma <- ifelse(show_summary, TRUE, show_sigma)
show_formula <- ifelse(show_summary, TRUE, show_formula)
show_r2 <- .additional_arguments(x, "show_summary", FALSE)
show_rmse <- .additional_arguments(x, "show_summary", FALSE)
# set defaults, if necessary
if (is.null(model_sigma)) {
show_sigma <- FALSE
}
.format_footer(
x,
digits = digits,
verbose = verbose,
show_sigma = show_sigma,
show_formula = show_formula,
show_r2 = show_r2,
show_rmse = show_rmse,
format = format
)
}
.print_caption <- function(x, caption = NULL, format = "text") {
no_caption <- attributes(x)$no_caption
# no table-title for certain model tables, indicated by the no_caption attribute
if (isTRUE(no_caption)) {
return(NULL)
}
title_attribute <- attributes(x)$title[1]
# check effects and component parts
if (!is.null(x$Effects) && all(x$Effects == "random")) {
eff_name <- "Random"
} else {
eff_name <- "Fixed"
}
if (!is.null(x$Component) && all(x$Component == "zero_inflated")) {
zero_inflated <- " (Zero-Inflation Component)"
} else {
zero_inflated <- ""
}
# caption = NULL, set default for HTML tables
if (identical(format, "html") && is.null(caption)) {
if (isTRUE(attributes(x)$is_ggeffects)) {
table_caption <- title_attribute
} else {
table_caption <- "Model Summary"
}
} else if (isTRUE(attributes(x)$ordinal_model)) {
table_caption <- ""
# caption is NULL, set default title, using title-attribute
} else if (!is.null(title_attribute) && is.null(caption)) {
if (length(title_attribute) == 1 && title_attribute == "") {
table_caption <- NULL
} else {
table_caption <- title_attribute
}
# if caption is not empty, use it as title
} else if (!is.null(caption) && caption != "") {
table_caption <- caption
# no table-title if caption is empty string
} else if (!is.null(caption) && caption == "") {
table_caption <- NULL
# default title for sub-components of models
} else if (identical(format, "text")) {
table_caption <- c(paste0("# ", eff_name, " Effects", zero_inflated), "blue")
} else {
table_caption <- paste0(eff_name, " Effects", zero_inflated)
}
table_caption
}
#' @keywords internal
.print_random_parameters <- function(random_params, digits = 2) {
insight::print_color("# Random Effects\n\n", "blue")
# create SD
random_params$SD <- NA
var_components <- random_params$Description %in% c("Within-Group Variance", "Between-Group Variance")
random_params$SD[var_components] <- sqrt(random_params$Value[var_components])
# format values
random_params$Value <- format(sprintf("%g", round(random_params$Value, digits = digits)), justify = "right")
random_params$SD[var_components] <- format(
sprintf("(%g)", round(random_params$SD[var_components], digits = digits)),
justify = "right"
)
# create summary-information for each component
random_params$Line <- ""
random_params$Term[is.na(random_params$Term)] <- ""
random_params$SD[is.na(random_params$SD)] <- ""
non_empty <- random_params$Term != "" & random_params$Type != "" # nolint
random_params$Line[non_empty] <- sprintf("%s (%s)", random_params$Type[non_empty], random_params$Term[non_empty])
non_empty <- random_params$Term != "" & random_params$Type == "" # nolint
random_params$Line[non_empty] <- sprintf("%s", random_params$Term[non_empty])
# final fix, indentions
random_params$Line <- sprintf(" %s", format(random_params$Line))
max_len <- max(nchar(random_params$Line)) + 2
out <- split(random_params, factor(random_params$Description, levels = unique(random_params$Description)))
for (i in out) {
if ("Within-Group Variance" %in% i$Description) {
insight::print_color(format("Within-Group Variance", width = max_len), color = "blue")
cat(sprintf("%s %s\n", i$Value, i$SD))
} else if ("Between-Group Variance" %in% i$Description) {
insight::print_color("Between-Group Variance\n", "blue")
for (j in seq_len(nrow(i))) {
cat(sprintf("%s %s %s\n", i$Line[j], i$Value[j], i$SD[j]))
}
} else if ("Correlations" %in% i$Description) {
insight::print_color("Correlations\n", "blue")
for (j in seq_len(nrow(i))) {
cat(sprintf("%s %s\n", i$Line[j], i$Value[j]))
}
} else if ("N" %in% i$Description) {
insight::print_color("N (groups per factor)\n", "blue")
for (j in seq_len(nrow(i))) {
cat(sprintf(" %s%s\n", format(i$Term[j], width = max_len - 2), i$Value[j]))
}
} else if ("Observations" %in% i$Description) {
insight::print_color(format("Observations", width = max_len), color = "blue")
cat(sprintf("%s\n", i$Value))
}
}
}
.find_min_colwidth <- function(formatted_table) {
shared_cols <- unique(unlist(lapply(formatted_table, colnames)))
col_width <- rep(NA, length(shared_cols))
for (i in seq_along(shared_cols)) {
col_width[i] <- max(unlist(lapply(formatted_table, function(j) {
column <- j[[shared_cols[i]]]
if (is.null(column)) {
NA
} else {
max(nchar(column))
}
})))
}
stats::na.omit(stats::setNames(col_width, shared_cols))
}
|