1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
|
# This function add meta-information to the returned parameters data frame,
# usually used for printing etc.
#' @keywords internal
.add_model_parameters_attributes <- function(params,
model,
ci,
exponentiate = FALSE,
bootstrap = FALSE,
iterations = 1000,
ci_method = NULL,
p_adjust = NULL,
include_info = FALSE,
verbose = TRUE,
group_level = FALSE,
wb_component = FALSE,
...) {
# capture additional arguments
dot.arguments <- list(...)
# model info
info <- .safe(suppressWarnings(insight::model_info(model, verbose = FALSE)))
if (is.null(info)) {
info <- list(family = "unknown", link_function = "unknown")
}
# for simplicity, we just use the model information from the first formula
# when we have multivariate response models...
if (insight::is_multivariate(model) && !"is_zero_inflated" %in% names(info) && !inherits(model, c("vgam", "vglm"))) {
info <- info[[1]]
}
# add regular attributes
if (isFALSE(dot.arguments$pretty_names)) {
attr(params, "pretty_names") <- params$Parameter
} else if (is.null(attr(params, "pretty_names", exact = TRUE))) {
attr(params, "pretty_names") <- suppressWarnings(format_parameters(model, model_info = info, ...))
}
attr(params, "ci") <- ci
attr(params, "ci_method") <- .format_ci_method_name(ci_method)
attr(params, "df_method") <- .format_ci_method_name(ci_method)
attr(params, "verbose") <- verbose
attr(params, "exponentiate") <- exponentiate
attr(params, "ordinal_model") <- isTRUE(info$is_ordinal) | isTRUE(info$is_multinomial)
attr(params, "linear_model") <- isTRUE(info$is_linear)
attr(params, "mixed_model") <- isTRUE(info$is_mixed)
attr(params, "n_obs") <- info$n_obs
attr(params, "model_class") <- as.character(class(model))
attr(params, "bootstrap") <- bootstrap
attr(params, "iterations") <- iterations
attr(params, "p_adjust") <- p_adjust
attr(params, "robust_vcov") <- "vcov" %in% names(list(...))
attr(params, "ignore_group") <- isFALSE(group_level)
attr(params, "ran_pars") <- isFALSE(group_level)
attr(params, "show_summary") <- isTRUE(include_info)
attr(params, "log_link") <- isTRUE(grepl("log", info$link_function, fixed = TRUE))
attr(params, "logit_link") <- isTRUE(identical(info$link_function, "logit"))
# save model call
attr(params, "model_call") <- .safe(insight::get_call(model))
# use tryCatch, these might fail...
attr(params, "test_statistic") <- .safe(insight::find_statistic(model))
attr(params, "log_response") <- .safe(isTRUE(grepl("log", insight::find_transformation(model), fixed = TRUE)))
attr(params, "log_predictors") <- .safe(any(grepl("log", unlist(insight::find_terms(model, verbose = FALSE)[c("conditional", "zero_inflated", "instruments")]), fixed = TRUE))) # nolint
# save if model is multivariate response model
if (isTRUE(info$is_multivariate)) {
attr(params, "multivariate_response") <- TRUE
}
# if we have a complex random-within-between model, don't show first title element
if (isTRUE(wb_component) && !is.null(params$Component) && any(c("within", "between") %in% params$Component)) {
attr(params, "no_caption") <- TRUE
}
# for additional infos, add R2, RMSE
if (isTRUE(include_info) && requireNamespace("performance", quietly = TRUE)) {
rsq <- .safe(suppressWarnings(performance::r2(model)))
attr(params, "r2") <- rsq
rmse <- .safe(performance::performance_rmse(model))
attr(params, "rmse") <- rmse
}
# Models for which titles should be removed - here we add exceptions for
# objects that should not have a table headline like "# Fixed Effects", when
# there is nothing else than fixed effects (redundant title)
if (inherits(model, c(
"mediate", "emmGrid", "emm_list", "summary_emm", "lm", "averaging",
"glm", "coxph", "bfsl", "deltaMethod", "phylolm", "phyloglm"
))) {
attr(params, "no_caption") <- TRUE
attr(params, "title") <- ""
}
# weighted nobs
weighted_nobs <- .safe({
w <- insight::get_weights(model, remove_na = TRUE, null_as_ones = TRUE)
round(sum(w))
})
attr(params, "weighted_nobs") <- weighted_nobs
# model formula
model_formula <- .safe(insight::safe_deparse(insight::find_formula(model, verbose = FALSE)$conditional)) # nolint
attr(params, "model_formula") <- model_formula
# column name for coefficients - for emm_list, we can have
# multiple different names for the parameter column. for other
# models, check whether we have coefficient, odds ratios, IRR etc.
if (inherits(model, "emm_list")) {
coef_col1 <- .find_coefficient_type(info, exponentiate, model[[1]])
coef_col2 <- .find_coefficient_type(info, exponentiate, model[[2]])
attr(params, "coefficient_name") <- coef_col1
attr(params, "coefficient_name2") <- coef_col2
} else {
coef_col <- .find_coefficient_type(info, exponentiate, model)
attr(params, "coefficient_name") <- coef_col
attr(params, "zi_coefficient_name") <- if (isTRUE(exponentiate)) {
"Odds Ratio"
} else {
"Log-Odds"
}
}
# special handling for meta analysis. we need additional
# information about study weights
if (inherits(model, c("rma", "rma.uni"))) {
rma_data <- .safe(insight::get_data(model, verbose = FALSE))
attr(params, "data") <- rma_data
attr(params, "study_weights") <- 1 / model$vi
}
# special handling for meta analysis again, but these objects save the
# inverse weighting information in a different column.
if (inherits(model, c("meta_random", "meta_fixed", "meta_bma"))) {
rma_data <- .safe(insight::get_data(model, verbose = FALSE))
attr(params, "data") <- rma_data
attr(params, "study_weights") <- 1 / params$SE^2
}
# should coefficients be grouped?
if ("groups" %in% names(dot.arguments)) {
attr(params, "coef_groups") <- dot.arguments[["groups"]]
}
# now comes all the digits stuff...
if ("digits" %in% names(dot.arguments)) {
attr(params, "digits") <- dot.arguments[["digits"]]
} else {
attr(params, "digits") <- 2
}
if ("ci_digits" %in% names(dot.arguments)) {
attr(params, "ci_digits") <- dot.arguments[["ci_digits"]]
} else {
attr(params, "ci_digits") <- NULL
}
if ("p_digits" %in% names(dot.arguments)) {
attr(params, "p_digits") <- dot.arguments[["p_digits"]]
} else {
attr(params, "p_digits") <- 3
}
if ("footer_digits" %in% names(dot.arguments)) {
attr(params, "footer_digits") <- dot.arguments[["footer_digits"]]
} else {
attr(params, "footer_digits") <- 3
}
if ("s_value" %in% names(dot.arguments)) {
attr(params, "s_value") <- dot.arguments[["s_value"]]
}
# pd?
if (isTRUE(dot.arguments[["pd"]]) && !is.null(params[["p"]])) {
params$pd <- bayestestR::p_to_pd(params[["p"]])
}
# add CI, and reorder
if (!"CI" %in% colnames(params) && length(ci) == 1) {
params$CI <- ci
ci_pos <- grep("CI_low", colnames(params), fixed = TRUE)
if (length(ci_pos)) {
if (length(ci_pos) > 1) {
ci_pos <- ci_pos[1]
}
a <- attributes(params)
params <- params[c(1:(ci_pos - 1), ncol(params), ci_pos:(ncol(params) - 1))]
attributes(params) <- utils::modifyList(a, attributes(params))
}
}
# include reference level?
if (isTRUE(dot.arguments[["include_reference"]])) {
a <- attributes(params)
params <- .safe(.add_reference_level(params, model), params)
attributes(params) <- utils::modifyList(a, attributes(params))
}
# add parameters with value and variable
attr(params, "pretty_labels") <- .format_value_labels(params, model)
row.names(params) <- NULL
params
}
#' Format CI method name when stored as an attribute
#'
#' @keywords internal
#' @noRd
.format_ci_method_name <- function(ci_method) {
if (is.null(ci_method)) {
return(NULL)
}
switch(tolower(ci_method),
# abbreviations
eti = ,
hdi = ,
si = toupper(ci_method),
# named after people
satterthwaite = ,
kenward = ,
wald = insight::format_capitalize(ci_method),
# special cases
bci = ,
bcai = "BCa",
# no change otherwise
ci_method
)
}
.find_coefficient_type <- function(info, exponentiate, model = NULL) {
# column name for coefficients
coef_col <- "Coefficient"
if (!is.null(model) && inherits(model, "emmGrid")) {
s <- summary(model)
name <- attributes(s)$estName
if (!is.null(name)) {
coef_col <- switch(name,
prob = "Probability",
odds.ratio = "Odds Ratio",
emmean = "Marginal Means",
rate = "Estimated Counts",
ratio = "Ratio",
"Coefficient"
)
}
} else if (!is.null(info) && info$family != "unknown" && !info$is_probit) {
if (isTRUE(exponentiate)) {
if (info$is_exponential && identical(info$link_function, "log")) {
coef_col <- "Prevalence Ratio"
} else if ((info$is_binomial && info$is_logit) || info$is_ordinal || info$is_multinomial || info$is_categorical) {
coef_col <- "Odds Ratio"
} else if (info$is_binomial && !info$is_logit) {
if (info$link_function == "identity") {
coef_col <- "Exp. Risk"
} else {
coef_col <- "Risk Ratio"
}
} else if (info$is_count) {
coef_col <- "IRR"
}
} else if (info$is_exponential && identical(info$link_function, "log")) {
coef_col <- "Log-Prevalence"
} else if ((info$is_binomial && info$is_logit) || info$is_ordinal || info$is_multinomial || info$is_categorical) {
coef_col <- "Log-Odds"
} else if (info$is_binomial && !info$is_logit) {
if (info$link_function == "identity") {
coef_col <- "Risk"
} else {
coef_col <- "Log-Risk"
}
} else if (info$is_count) {
coef_col <- "Log-Mean"
}
}
coef_col
}
.is_valid_exponentiate_argument <- function(exponentiate) {
isTRUE(exponentiate) || identical(exponentiate, "nongaussian")
}
#' @keywords internal
.exponentiate_parameters <- function(params, model = NULL, exponentiate = TRUE) {
# "exponentiate" must be
# - TRUE, will always exponentiate all coefficients
# - "nongaussian", will exponentiate all coefficients for models with non-gaussian family
if (!.is_valid_exponentiate_argument(exponentiate)) {
return(params)
}
# check if non-gaussian applies
if (!is.null(model) && insight::model_info(model, verbose = FALSE)$is_linear &&
identical(exponentiate, "nongaussian")) {
return(params)
}
# pattern for marginaleffects objects
if (is.null(attr(params, "coefficient_name"))) {
pattern <- "^(Coefficient|Mean|Median|MAP|Std_Coefficient|CI_|Std_CI)"
} else {
pattern <- sprintf(
"^(Coefficient|Mean|Median|MAP|Std_Coefficient|%s|CI_|Std_CI)",
attr(params, "coefficient_name")
)
}
columns <- grepl(pattern = pattern, colnames(params))
if (any(columns)) {
if (inherits(model, "mvord")) {
rows <- params$Component != "correlation"
} else if (is.null(params$Component)) {
# don't exponentiate dispersion
rows <- seq_len(nrow(params))
} else if (inherits(model, c("clm", "clm2", "clmm"))) {
## TODO: make sure we catch all ordinal models properly here
rows <- !tolower(params$Component) %in% c("location", "scale")
} else {
rows <- !tolower(params$Component) %in% c("dispersion", "residual")
}
params[rows, columns] <- exp(params[rows, columns])
if (all(c("Coefficient", "SE") %in% names(params))) {
params$SE[rows] <- params$Coefficient[rows] * params$SE[rows]
}
}
params
}
.add_pretty_names <- function(params, model) {
attr(params, "model_class") <- class(model)
cp <- insight::clean_parameters(model)
clean_params <- cp[cp$Parameter %in% params$Parameter, ]
named_clean_params <- stats::setNames(
clean_params$Cleaned_Parameter[match(params$Parameter, clean_params$Parameter)],
params$Parameter
)
# add Group variable
if (!is.null(clean_params$Group) && any(nzchar(clean_params$Group, keepNA = TRUE))) {
params$Group <- .safe(gsub("(.*): (.*)", "\\2", clean_params$Group))
}
attr(params, "cleaned_parameters") <- named_clean_params
attr(params, "pretty_names") <- named_clean_params
params
}
#' @keywords internal
.add_anova_attributes <- function(params, model, ci, test = NULL, alternative = NULL, ...) {
dot.arguments <- lapply(match.call(expand.dots = FALSE)$`...`, function(x) x) # nolint
attr(params, "ci") <- ci
attr(params, "model_class") <- class(model)
attr(params, "anova_type") <- .anova_type(model)
attr(params, "text_alternative") <- .anova_alternative(params, alternative)
if (inherits(model, "Anova.mlm") && !identical(test, "univariate")) {
attr(params, "anova_test") <- model$test
}
# some tweaks for MANOVA, so outputs of manova(model) and car::Manova(model)
# look the same, see #833
if (inherits(model, "maov") && is.null(test) && "Pillai" %in% names(params)) {
attr(params, "anova_test") <- "Pillai"
names(params)[names(params) == "Pillai"] <- "Statistic"
}
# here we add exception for objects that should not have a table headline
if (inherits(model, c("aov", "anova", "lm"))) {
attr(params, "title") <- ""
}
if ("digits" %in% names(dot.arguments)) {
attr(params, "digits") <- eval(dot.arguments[["digits"]])
} else {
attr(params, "digits") <- 2
}
if ("ci_digits" %in% names(dot.arguments)) {
attr(params, "ci_digits") <- eval(dot.arguments[["ci_digits"]])
} else {
attr(params, "ci_digits") <- NULL
}
if ("p_digits" %in% names(dot.arguments)) {
attr(params, "p_digits") <- eval(dot.arguments[["p_digits"]])
} else {
attr(params, "p_digits") <- 3
}
if ("s_value" %in% names(dot.arguments)) {
attr(params, "s_value") <- eval(dot.arguments[["s_value"]])
}
params
}
.additional_arguments <- function(x, value, default) {
add_args <- attributes(x)$additional_arguments
if (length(add_args) > 0 && value %in% names(add_args)) {
out <- add_args[[value]]
} else {
out <- attributes(x)[[value]]
}
if (is.null(out)) {
out <- default
}
out
}
# checks for valid inputs in model_parameters(). E.g., some models don't support
# the "vcov" argument - this should not be silently ignored, but rather the user
# should be informed that robust SE are not available for that model.
.check_dots <- function(dots, not_allowed, model_class, function_name = "model_parameters", verbose = TRUE) {
# remove arguments that are NULL
dots <- insight::compact_list(dots)
# return if no args
if (!length(dots) || is.null(dots)) {
return(NULL)
}
not_allowed <- not_allowed[which(not_allowed %in% names(dots))]
if (length(not_allowed)) {
if (verbose) {
not_allowed_string <- datawizard::text_concatenate(not_allowed, enclose = "\"")
insight::format_alert(
sprintf("Following arguments are not supported in `%s()` for models of class `%s` and will be ignored: %s", function_name, model_class, not_allowed_string), # nolint
sprintf("In case you obtain expected results, please run `%s()` again without specifying the above mentioned arguments.", function_name) # nolint
)
}
dots[not_allowed] <- NULL
if (!length(dots)) {
dots <- NULL
}
}
dots
}
# functions to check if necessary default argument was provided ------------
.is_model_valid <- function(model) {
if (missing(model) || is.null(model)) {
insight::format_error(
"You must provide a model-object. Argument `model` cannot be missing or `NULL`."
)
}
}
|