1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/convert_efa_to_cfa.R
\name{convert_efa_to_cfa}
\alias{convert_efa_to_cfa}
\alias{convert_efa_to_cfa.fa}
\alias{efa_to_cfa}
\title{Conversion between EFA results and CFA structure}
\usage{
convert_efa_to_cfa(model, ...)
\method{convert_efa_to_cfa}{fa}(
model,
threshold = "max",
names = NULL,
max_per_dimension = NULL,
...
)
efa_to_cfa(model, ...)
}
\arguments{
\item{model}{An EFA model (e.g., a \code{psych::fa} object).}
\item{...}{Arguments passed to or from other methods.}
\item{threshold}{A value between 0 and 1 indicates which (absolute) values
from the loadings should be removed. An integer higher than 1 indicates the
n strongest loadings to retain. Can also be \code{"max"}, in which case it
will only display the maximum loading per variable (the most simple
structure).}
\item{names}{Vector containing dimension names.}
\item{max_per_dimension}{Maximum number of variables to keep per dimension.}
}
\value{
Converted index.
}
\description{
Enables a conversion between Exploratory Factor Analysis (EFA) and
Confirmatory Factor Analysis (CFA) \code{lavaan}-ready structure.
}
\examples{
\dontshow{if (require("psych") && require("lavaan")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
\donttest{
library(parameters)
data(attitude)
efa <- psych::fa(attitude, nfactors = 3)
model1 <- efa_to_cfa(efa)
model2 <- efa_to_cfa(efa, threshold = 0.3)
model3 <- efa_to_cfa(efa, max_per_dimension = 2)
suppressWarnings(anova(
lavaan::cfa(model1, data = attitude),
lavaan::cfa(model2, data = attitude),
lavaan::cfa(model3, data = attitude)
))
}
\dontshow{\}) # examplesIf}
}
|