1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/methods_hclust.R
\name{model_parameters.hclust}
\alias{model_parameters.hclust}
\title{Parameters from Cluster Models (k-means, ...)}
\usage{
\method{model_parameters}{hclust}(model, data = NULL, clusters = NULL, ...)
}
\arguments{
\item{model}{Cluster model.}
\item{data}{A data frame.}
\item{clusters}{A vector with clusters assignments (must be same length as
rows in data).}
\item{...}{Arguments passed to or from other methods.}
}
\description{
Format cluster models obtained for example by \code{\link[=kmeans]{kmeans()}}.
}
\examples{
\dontshow{if (require("factoextra", quietly = TRUE) && require("dbscan", quietly = TRUE) && require("cluster", quietly = TRUE) && require("fpc", quietly = TRUE)) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
\donttest{
#
# K-means -------------------------------
model <- kmeans(iris[1:4], centers = 3)
rez <- model_parameters(model)
rez
# Get clusters
predict(rez)
# Clusters centers in long form
attributes(rez)$means
# Between and Total Sum of Squares
attributes(rez)$Sum_Squares_Total
attributes(rez)$Sum_Squares_Between
#
# Hierarchical clustering (hclust) ---------------------------
data <- iris[1:4]
model <- hclust(dist(data))
clusters <- cutree(model, 3)
rez <- model_parameters(model, data, clusters)
rez
# Get clusters
predict(rez)
# Clusters centers in long form
attributes(rez)$means
# Between and Total Sum of Squares
attributes(rez)$Total_Sum_Squares
attributes(rez)$Between_Sum_Squares
#
# Hierarchical K-means (factoextra::hkclust) ----------------------
data <- iris[1:4]
model <- factoextra::hkmeans(data, k = 3)
rez <- model_parameters(model)
rez
# Get clusters
predict(rez)
# Clusters centers in long form
attributes(rez)$means
# Between and Total Sum of Squares
attributes(rez)$Sum_Squares_Total
attributes(rez)$Sum_Squares_Between
# K-Medoids (PAM and HPAM) ==============
model <- cluster::pam(iris[1:4], k = 3)
model_parameters(model)
model <- fpc::pamk(iris[1:4], criterion = "ch")
model_parameters(model)
# DBSCAN ---------------------------
model <- dbscan::dbscan(iris[1:4], eps = 1.45, minPts = 10)
rez <- model_parameters(model, iris[1:4])
rez
# Get clusters
predict(rez)
# Clusters centers in long form
attributes(rez)$means
# Between and Total Sum of Squares
attributes(rez)$Sum_Squares_Total
attributes(rez)$Sum_Squares_Between
# HDBSCAN
model <- dbscan::hdbscan(iris[1:4], minPts = 10)
model_parameters(model, iris[1:4])
}
\dontshow{\}) # examplesIf}
}
|