1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/methods_lavaan.R, R/methods_psych.R
\name{model_parameters.lavaan}
\alias{model_parameters.lavaan}
\alias{model_parameters.principal}
\title{Parameters from PCA, FA, CFA, SEM}
\usage{
\method{model_parameters}{lavaan}(
model,
ci = 0.95,
standardize = FALSE,
component = c("regression", "correlation", "loading", "defined"),
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)
\method{model_parameters}{principal}(
model,
sort = FALSE,
threshold = NULL,
labels = NULL,
verbose = TRUE,
...
)
}
\arguments{
\item{model}{Model object.}
\item{ci}{Confidence Interval (CI) level. Default to \code{0.95} (\verb{95\%}).}
\item{standardize}{Return standardized parameters (standardized coefficients).
Can be \code{TRUE} (or \code{"all"} or \code{"std.all"}) for standardized
estimates based on both the variances of observed and latent variables;
\code{"latent"} (or \code{"std.lv"}) for standardized estimates based
on the variances of the latent variables only; or \code{"no_exogenous"}
(or \code{"std.nox"}) for standardized estimates based on both the
variances of observed and latent variables, but not the variances of
exogenous covariates. See \code{lavaan::standardizedsolution} for details.}
\item{component}{What type of links to return. Can be \code{"all"} or some of
\code{c("regression", "correlation", "loading", "variance", "mean")}.}
\item{keep}{Character containing a regular expression pattern that
describes the parameters that should be included (for \code{keep}) or excluded
(for \code{drop}) in the returned data frame. \code{keep} may also be a
named list of regular expressions. All non-matching parameters will be
removed from the output. If \code{keep} is a character vector, every parameter
name in the \emph{"Parameter"} column that matches the regular expression in
\code{keep} will be selected from the returned data frame (and vice versa,
all parameter names matching \code{drop} will be excluded). Furthermore, if
\code{keep} has more than one element, these will be merged with an \code{OR}
operator into a regular expression pattern like this: \code{"(one|two|three)"}.
If \code{keep} is a named list of regular expression patterns, the names of the
list-element should equal the column name where selection should be
applied. This is useful for model objects where \code{model_parameters()}
returns multiple columns with parameter components, like in
\code{\link[=model_parameters.lavaan]{model_parameters.lavaan()}}. Note that the regular expression pattern
should match the parameter names as they are stored in the returned data
frame, which can be different from how they are printed. Inspect the
\verb{$Parameter} column of the parameters table to get the exact parameter
names.}
\item{drop}{See \code{keep}.}
\item{verbose}{Toggle warnings.}
\item{...}{Arguments passed to or from other methods.}
\item{sort}{Sort the loadings.}
\item{threshold}{A value between 0 and 1 indicates which (absolute) values
from the loadings should be removed. An integer higher than 1 indicates the
n strongest loadings to retain. Can also be \code{"max"}, in which case it
will only display the maximum loading per variable (the most simple
structure).}
\item{labels}{A character vector containing labels to be added to the
loadings data. Usually, the question related to the item.}
}
\value{
A data frame of indices or loadings.
}
\description{
Format structural models from the \strong{psych} or \strong{FactoMineR} packages.
}
\details{
For the structural models obtained with \strong{psych}, the following indices
are present:
\itemize{
\item \strong{Complexity} (\cite{Hoffman's, 1978; Pettersson and Turkheimer,
2010}) represents the number of latent components needed to account for
the observed variables. Whereas a perfect simple structure solution has a
complexity of 1 in that each item would only load on one factor, a
solution with evenly distributed items has a complexity greater than 1.
\item \strong{Uniqueness} represents the variance that is 'unique' to the
variable and not shared with other variables. It is equal to \verb{1 – communality} (variance that is shared with other variables). A uniqueness
of \code{0.20} suggests that \verb{20\%} or that variable's variance is not shared
with other variables in the overall factor model. The greater 'uniqueness'
the lower the relevance of the variable in the factor model.
\item \strong{MSA} represents the Kaiser-Meyer-Olkin Measure of Sampling
Adequacy (\cite{Kaiser and Rice, 1974}) for each item. It indicates
whether there is enough data for each factor give reliable results for the
PCA. The value should be > 0.6, and desirable values are > 0.8
(\cite{Tabachnick and Fidell, 2013}).
}
}
\note{
There is also a
\href{https://easystats.github.io/see/articles/parameters.html}{\code{plot()}-method}
for \code{lavaan} models implemented in the
\href{https://easystats.github.io/see/}{\strong{see}-package}.
}
\examples{
\donttest{
library(parameters)
if (require("psych", quietly = TRUE)) {
# Principal Component Analysis (PCA) ---------
pca <- psych::principal(attitude)
model_parameters(pca)
pca <- psych::principal(attitude, nfactors = 3, rotate = "none")
model_parameters(pca, sort = TRUE, threshold = 0.2)
principal_components(attitude, n = 3, sort = TRUE, threshold = 0.2)
# Exploratory Factor Analysis (EFA) ---------
efa <- psych::fa(attitude, nfactors = 3)
model_parameters(efa,
threshold = "max", sort = TRUE,
labels = as.character(1:ncol(attitude))
)
# Omega ---------
omega <- psych::omega(mtcars, nfactors = 3)
params <- model_parameters(omega)
params
summary(params)
}
}
# lavaan
library(parameters)
# lavaan -------------------------------------
if (require("lavaan", quietly = TRUE)) {
# Confirmatory Factor Analysis (CFA) ---------
structure <- " visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 "
model <- lavaan::cfa(structure, data = HolzingerSwineford1939)
model_parameters(model)
model_parameters(model, standardize = TRUE)
# filter parameters
model_parameters(
model,
parameters = list(
To = "^(?!visual)",
From = "^(?!(x7|x8))"
)
)
# Structural Equation Model (SEM) ------------
structure <- "
# latent variable definitions
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + a*y2 + b*y3 + c*y4
dem65 =~ y5 + a*y6 + b*y7 + c*y8
# regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60
# residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8
"
model <- lavaan::sem(structure, data = PoliticalDemocracy)
model_parameters(model)
model_parameters(model, standardize = TRUE)
}
}
\references{
\itemize{
\item Kaiser, H.F. and Rice. J. (1974). Little jiffy, mark iv. Educational and
Psychological Measurement, 34(1):111–117
\item Pettersson, E., and Turkheimer, E. (2010). Item selection, evaluation, and
simple structure in personality data. Journal of research in personality,
44(4), 407-420.
\item Revelle, W. (2016). How To: Use the psych package for Factor Analysis and
data reduction.
\item Tabachnick, B. G., and Fidell, L. S. (2013). Using multivariate statistics
(6th ed.). Boston: Pearson Education.
\item Rosseel Y (2012). lavaan: An R Package for Structural Equation
Modeling. Journal of Statistical Software, 48(2), 1-36.
\item Merkle EC , Rosseel Y (2018). blavaan: Bayesian Structural Equation
Models via Parameter Expansion. Journal of Statistical Software, 85(4),
1-30. http://www.jstatsoft.org/v85/i04/
}
}
|