File: n_clusters.Rd

package info (click to toggle)
r-cran-parameters 0.24.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,852 kB
  • sloc: sh: 16; makefile: 2
file content (229 lines) | stat: -rw-r--r-- 7,672 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/n_clusters.R, R/n_clusters_easystats.R
\name{n_clusters}
\alias{n_clusters}
\alias{n_clusters_elbow}
\alias{n_clusters_gap}
\alias{n_clusters_silhouette}
\alias{n_clusters_dbscan}
\alias{n_clusters_hclust}
\title{Find number of clusters in your data}
\usage{
n_clusters(
  x,
  standardize = TRUE,
  include_factors = FALSE,
  package = c("easystats", "NbClust", "mclust"),
  fast = TRUE,
  nbclust_method = "kmeans",
  n_max = 10,
  ...
)

n_clusters_elbow(
  x,
  standardize = TRUE,
  include_factors = FALSE,
  clustering_function = stats::kmeans,
  n_max = 10,
  ...
)

n_clusters_gap(
  x,
  standardize = TRUE,
  include_factors = FALSE,
  clustering_function = stats::kmeans,
  n_max = 10,
  gap_method = "firstSEmax",
  ...
)

n_clusters_silhouette(
  x,
  standardize = TRUE,
  include_factors = FALSE,
  clustering_function = stats::kmeans,
  n_max = 10,
  ...
)

n_clusters_dbscan(
  x,
  standardize = TRUE,
  include_factors = FALSE,
  method = c("kNN", "SS"),
  min_size = 0.1,
  eps_n = 50,
  eps_range = c(0.1, 3),
  ...
)

n_clusters_hclust(
  x,
  standardize = TRUE,
  include_factors = FALSE,
  distance_method = "correlation",
  hclust_method = "average",
  ci = 0.95,
  iterations = 100,
  ...
)
}
\arguments{
\item{x}{A data frame.}

\item{standardize}{Standardize the dataframe before clustering (default).}

\item{include_factors}{Logical, if \code{TRUE}, factors are converted to numerical
values in order to be included in the data for determining the number of
clusters. By default, factors are removed, because most methods that
determine the number of clusters need numeric input only.}

\item{package}{Package from which methods are to be called to determine the
number of clusters. Can be \code{"all"} or a vector containing
\code{"easystats"}, \code{"NbClust"}, \code{"mclust"}, and \code{"M3C"}.}

\item{fast}{If \code{FALSE}, will compute 4 more indices (sets \code{index = "allong"}
in \code{NbClust}). This has been deactivated by default as it is
computationally heavy.}

\item{nbclust_method}{The clustering method (passed to \code{NbClust::NbClust()}
as \code{method}).}

\item{n_max}{Maximal number of clusters to test.}

\item{...}{Arguments passed to or from other methods. For instance, when
\code{bootstrap = TRUE}, arguments like \code{type} or \code{parallel} are passed down to
\code{bootstrap_model()}.

Further non-documented arguments are:
\itemize{
\item \code{digits}, \code{p_digits}, \code{ci_digits} and \code{footer_digits} to set the number of
digits for the output. \code{groups} can be used to group coefficients. These
arguments will be passed to the print-method, or can directly be used in
\code{print()}, see documentation in \code{\link[=print.parameters_model]{print.parameters_model()}}.
\item If \code{s_value = TRUE}, the p-value will be replaced by the S-value in the
output (cf. \emph{Rafi and Greenland 2020}).
\item \code{pd} adds an additional column with the \emph{probability of direction} (see
\code{\link[bayestestR:p_direction]{bayestestR::p_direction()}} for details). Furthermore, see 'Examples' for
this function.
\item For developers, whose interest mainly is to get a "tidy" data frame of
model summaries, it is recommended to set \code{pretty_names = FALSE} to speed
up computation of the summary table.
}}

\item{clustering_function, gap_method}{Other arguments passed to other
functions. \code{clustering_function} is used by \code{fviz_nbclust()} and
can be \code{kmeans}, \code{cluster::pam}, \code{cluster::clara}, \code{cluster::fanny}, and
more. \code{gap_method} is used by \code{cluster::maxSE} to extract the optimal
numbers of clusters (see its \code{method} argument).}

\item{method, min_size, eps_n, eps_range}{Arguments for DBSCAN algorithm.}

\item{distance_method}{The distance method (passed to \code{\link[=dist]{dist()}}). Used by
algorithms relying on the distance matrix, such as \code{hclust} or \code{dbscan}.}

\item{hclust_method}{The hierarchical clustering method (passed to \code{\link[=hclust]{hclust()}}).}

\item{ci}{Confidence Interval (CI) level. Default to \code{0.95} (\verb{95\%}).}

\item{iterations}{The number of bootstrap replicates. This only apply in the
case of bootstrapped frequentist models.}
}
\description{
Similarly to \code{\link[=n_factors]{n_factors()}} for factor / principal component analysis,
\code{n_clusters()} is the main function to find out the optimal numbers of clusters
present in the data based on the maximum consensus of a large number of
methods.

Essentially, there exist many methods to determine the optimal number of
clusters, each with pros and cons, benefits and limitations. The main
\code{n_clusters} function proposes to run all of them, and find out the number of
clusters that is suggested by the majority of methods (in case of ties, it
will select the most parsimonious solution with fewer clusters).

Note that we also implement some specific, commonly used methods, like the
Elbow or the Gap method, with their own visualization functionalities. See
the examples below for more details.
}
\note{
There is also a \href{https://easystats.github.io/see/articles/parameters.html}{\code{plot()}-method} implemented in the \href{https://easystats.github.io/see/}{\strong{see}-package}.
}
\examples{
\donttest{
library(parameters)

# The main 'n_clusters' function ===============================
if (require("mclust", quietly = TRUE) && require("NbClust", quietly = TRUE) &&
  require("cluster", quietly = TRUE) && require("see", quietly = TRUE)) {
  n <- n_clusters(iris[, 1:4], package = c("NbClust", "mclust")) # package can be "all"
  n
  summary(n)
  as.data.frame(n) # Duration is the time elapsed for each method in seconds
  plot(n)

  # The following runs all the method but it significantly slower
  # n_clusters(iris[1:4], standardize = FALSE, package = "all", fast = FALSE)
}
}
\dontshow{if (require("see", quietly = TRUE) && require("factoextra", quietly = TRUE)) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
\donttest{
x <- n_clusters_elbow(iris[1:4])
x
as.data.frame(x)
plot(x)
}
\dontshow{\}) # examplesIf}
\donttest{
#
# Gap method --------------------
if (require("see", quietly = TRUE) &&
  require("cluster", quietly = TRUE) &&
  require("factoextra", quietly = TRUE)) {
  x <- n_clusters_gap(iris[1:4])
  x
  as.data.frame(x)
  plot(x)
}
}
\donttest{
#
# Silhouette method --------------------------
if (require("factoextra", quietly = TRUE)) {
  x <- n_clusters_silhouette(iris[1:4])
  x
  as.data.frame(x)
  plot(x)
}
}
\donttest{
#
if (require("dbscan", quietly = TRUE)) {
  # DBSCAN method -------------------------
  # NOTE: This actually primarily estimates the 'eps' parameter, the number of
  # clusters is a side effect (it's the number of clusters corresponding to
  # this 'optimal' EPS parameter).
  x <- n_clusters_dbscan(iris[1:4], method = "kNN", min_size = 0.05) # 5 percent
  x
  head(as.data.frame(x))
  plot(x)

  x <- n_clusters_dbscan(iris[1:4], method = "SS", eps_n = 100, eps_range = c(0.1, 2))
  x
  head(as.data.frame(x))
  plot(x)
}
}
\donttest{
#
# hclust method -------------------------------
if (require("pvclust", quietly = TRUE)) {
  # iterations should be higher for real analyses
  x <- n_clusters_hclust(iris[1:4], iterations = 50, ci = 0.90)
  x
  head(as.data.frame(x), n = 10) # Print 10 first rows
  plot(x)
}
}
}