1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
|
skip_on_cran()
test_that("emmeans | lm", {
skip_if_not_installed("emmeans")
skip_if_not_installed("boot")
skip_if_not_installed("coda")
model <- lm(mpg ~ log(wt) + factor(cyl), data = mtcars)
set.seed(7)
b <- bootstrap_model(model, iterations = 1000)
expect_equal(summary(emmeans::emmeans(b, ~cyl))$emmean,
summary(emmeans::emmeans(model, ~cyl))$emmean,
tolerance = 0.1
)
set.seed(7)
b <- bootstrap_parameters(model, iterations = 1000)
expect_equal(summary(emmeans::emmeans(b, ~cyl))$emmean,
summary(emmeans::emmeans(model, ~cyl))$emmean,
tolerance = 0.1
)
mp <- model_parameters(emmeans::emmeans(b, consec ~ cyl), verbose = FALSE)
expect_identical(
colnames(mp),
c("Parameter", "Median", "CI", "CI_low", "CI_high", "pd", "Component")
)
expect_identical(nrow(mp), 5L)
})
test_that("emmeans | lmer", {
skip_if_not_installed("emmeans")
skip_if_not_installed("boot")
skip_if_not_installed("lme4")
skip_if_not_installed("coda")
model <- lme4::lmer(mpg ~ log(wt) + factor(cyl) + (1 | gear), data = mtcars)
set.seed(7)
b <- bootstrap_model(model, iterations = 1000)
expect_equal(summary(emmeans::emmeans(b, ~cyl))$emmean,
summary(emmeans::emmeans(model, ~cyl))$emmean,
tolerance = 0.1
)
set.seed(7)
b <- bootstrap_parameters(model, iterations = 1000)
expect_equal(summary(emmeans::emmeans(b, ~cyl))$emmean,
summary(emmeans::emmeans(model, ~cyl))$emmean,
tolerance = 0.1
)
mp <- suppressWarnings(model_parameters(emmeans::emmeans(b, consec ~ cyl)))
expect_identical(
colnames(mp),
c("Parameter", "Median", "CI", "CI_low", "CI_high", "pd", "Component")
)
expect_identical(nrow(mp), 5L)
})
test_that("emmeans | glmmTMB", {
skip_if_not_installed("coda")
skip_if_not_installed("emmeans")
skip_if_not_installed("boot")
skip_if_not_installed("lme4")
suppressWarnings(skip_if_not_installed("glmmTMB"))
data(Salamanders, package = "glmmTMB")
model <- glmmTMB::glmmTMB(count ~ spp + mined + (1 | site), family = glmmTMB::nbinom2, data = Salamanders)
set.seed(7)
b <- bootstrap_parameters(model, iterations = 10)
out <- summary(emmeans::emmeans(b, ~spp, type = "response"))
expect_equal(
out$response,
c(0.654, 0.1515, 0.8856, 0.261, 0.9775, 1.2909, 0.9031),
tolerance = 0.1
)
expect_identical(
colnames(out),
c("spp", "response", "lower.HPD", "upper.HPD")
)
expect_identical(nrow(out), 7L)
})
|