1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
|
skip_on_os("mac")
skip_on_cran()
skip_if_not_installed("glmmTMB")
skip_if_not_installed("lme4")
test_that("group_level_total", {
data("fish", package = "insight")
m1 <- suppressWarnings(glmmTMB::glmmTMB(
count ~ child + camper + (1 | ID),
data = fish,
family = poisson()
))
m2 <- suppressWarnings(glmmTMB::glmmTMB(
count ~ child + camper + (1 + xb | persons) + (1 + zg | ID),
ziformula = ~ child + livebait + (1 + zg + nofish | ID),
dispformula = ~xb,
data = fish,
family = glmmTMB::truncated_poisson()
))
m3 <- suppressWarnings(glmmTMB::glmmTMB(
count ~ child + camper,
ziformula = ~ child + livebait + (1 | ID),
data = fish,
family = glmmTMB::truncated_poisson()
))
m4 <- suppressWarnings(glmmTMB::glmmTMB(
count ~ child + camper + (1 + xb | persons),
ziformula = ~ child + livebait,
dispformula = ~xb,
data = fish,
family = glmmTMB::truncated_poisson()
))
m5 <- suppressWarnings(lme4::glmer(
count ~ child + camper + (1 | ID),
data = fish,
family = poisson()
))
m6 <- suppressWarnings(lme4::lmer(
Reaction ~ Days + (1 + Days | Subject),
data = lme4::sleepstudy
))
out <- model_parameters(m1, effects = "total")
expect_identical(dim(out), c(4L, 6L))
out <- model_parameters(m2, effects = "total")
expect_identical(dim(out), c(28L, 6L))
out <- model_parameters(m3, effects = "total")
expect_identical(dim(out), c(4L, 6L))
out <- model_parameters(m4, effects = "total")
expect_identical(dim(out), c(8L, 6L))
out <- model_parameters(m5, effects = "total")
expect_identical(dim(out), c(4L, 5L))
out <- model_parameters(m6, effects = "total")
expect_identical(dim(out), c(36L, 5L))
})
test_that("group_level_total, brms", {
skip_if_not_installed("curl")
skip_if_offline()
skip_if_not_installed("httr2")
skip_if_not_installed("brms")
m1 <- insight::download_model("brms_zi_4")
m2 <- insight::download_model("brms_sigma_3")
skip_if(is.null(m1) || is.null(m2))
out <- model_parameters(m1, effects = "total")
expect_identical(dim(out), c(28L, 10L))
out <- model_parameters(m2, effects = "total")
expect_identical(dim(out), c(12L, 10L))
})
|