File: test-mmrm.R

package info (click to toggle)
r-cran-parameters 0.24.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,852 kB
  • sloc: sh: 16; makefile: 2
file content (98 lines) | stat: -rw-r--r-- 2,115 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
skip_on_cran()

skip_if_not_installed("mmrm")
skip_if_not(packageVersion("insight") > "0.18.8")

test_that("model_parameters", {
  data(fev_data, package = "mmrm")
  m1 <- mmrm::mmrm(
    formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID),
    data = fev_data
  )

  out1 <- coef(summary(m1))
  out2 <- model_parameters(m1)
  expect_equal(
    as.vector(out1[, "Estimate"]),
    out2$Coefficient,
    tolerance = 1e-4,
    ignore_attr = TRUE
  )
  expect_identical(
    rownames(out1),
    out2$Parameter
  )
  expect_equal(
    as.vector(out1[, "df"]),
    out2$df_error,
    tolerance = 1e-4,
    ignore_attr = TRUE
  )
  expect_equal(
    as.vector(out1[, "Pr(>|t|)"]),
    out2$p,
    tolerance = 1e-4,
    ignore_attr = TRUE
  )
  expect_equal(
    as.vector(out1[, "t value"]),
    out2$t,
    tolerance = 1e-4,
    ignore_attr = TRUE
  )
  expect_equal(
    as.vector(out1[, "Std. Error"]),
    out2$SE,
    tolerance = 1e-4,
    ignore_attr = TRUE
  )
  expect_identical(attributes(out2)$ci_method, "Satterthwaite")
})

test_that("model_parameters", {
  data(fev_data, package = "mmrm")
  m1 <- mmrm::mmrm(
    formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID),
    data = fev_data,
    method = "Kenward-Roger"
  )

  out1 <- coef(summary(m1))
  out2 <- model_parameters(m1)

  expect_equal(
    as.vector(out1[, "Estimate"]),
    out2$Coefficient,
    tolerance = 1e-4,
    ignore_attr = TRUE
  )
  expect_identical(
    rownames(out1),
    out2$Parameter
  )
  expect_equal(
    as.vector(out1[, "df"]),
    out2$df_error,
    tolerance = 1e-4,
    ignore_attr = TRUE
  )
  expect_equal(
    as.vector(out1[, "Pr(>|t|)"]),
    out2$p,
    tolerance = 1e-4,
    ignore_attr = TRUE
  )
  expect_equal(
    as.vector(out1[, "t value"]),
    out2$t,
    tolerance = 1e-4,
    ignore_attr = TRUE
  )
  expect_equal(
    as.vector(out1[, "Std. Error"]),
    out2$SE,
    tolerance = 1e-4,
    ignore_attr = TRUE
  )
  expect_identical(attributes(out2)$ci_method, "Kenward")
})