File: OptPath_getter.R

package info (click to toggle)
r-cran-paramhelpers 1.14.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 992 kB
  • sloc: ansic: 102; sh: 13; makefile: 2
file content (264 lines) | stat: -rw-r--r-- 8,131 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#' @title Get the length of the optimization path.
#'
#' @description
#' Dependent parameters whose requirements are not satisfied are represented by a scalar
#' NA in the output.
#'
#' @template arg_op
#' @return `integer(1)`
#' @export
#' @family optpath
getOptPathLength = function(op) {
  UseMethod("getOptPathLength")
}

#' @title Get an element from the optimization path.
#'
#' @description
#' Dependent parameters whose requirements are not satisfied are represented by a scalar NA
#' in the elements of `x` of the return value.
#'
#' @template arg_op
#' @param index (`integer(1)`)\cr
#'   Index of element.
#' @return List with elements `x` (named `list`), `y` (named `numeric`),
#'   `dob` `integer(1)`, `eol` `integer(1)`.
#'   The elements `error.message` (`character(1)`),
#'   `exec.time` (`numeric(1)`) and `extra` (named `list`) are
#'   there if the respective options in [OptPath()] are enabled.
#' @rdname getOptPathEl
#' @export
#' @family optpath
getOptPathEl = function(op, index) {
  UseMethod("getOptPathEl")
}

#' Get data.frame of input points (X-space) referring to the param set from the optimization path.
#'
#' @template arg_op
#' @template arg_opgetter_dob
#' @template arg_opgetter_eol
#' @return [data.frame].
#' @export
#' @family optpath
getOptPathX = function(op, dob, eol) {
  UseMethod("getOptPathX")
}

#' Get y-vector or y-matrix from the optimization path.
#'
#' @template arg_op
#' @param names [character]\cr
#'   Names of performance measure.
#'   Default is all performance measures in path.
#' @template arg_opgetter_dob
#' @template arg_opgetter_eol
#' @param drop (`logical(1)`)\cr
#'   Return vector instead of matrix when only one y-column was selected?
#'   Default is `TRUE`.
#' @return (`numeric` | `matrix`). The columns of the matrix are always named.
#' @export
#' @family optpath
getOptPathY = function(op, names, dob, eol, drop = TRUE) {
  UseMethod("getOptPathY")
}

#' Get date-of-birth vector from the optimization path.
#'
#' @template arg_op
#' @template arg_opgetter_dob
#' @template arg_opgetter_eol
#' @return [integer].
#' @export
#' @family optpath
getOptPathDOB = function(op, dob, eol) {
  UseMethod("getOptPathDOB")
}

#' Get end-of-life vector from the optimization path.
#'
#' @template arg_op
#' @template arg_opgetter_dob
#' @template arg_opgetter_eol
#' @return [integer].
#' @export
#' @family optpath
getOptPathEOL = function(op, dob, eol) {
  UseMethod("getOptPathEOL")
}

#' Get error-message vector from the optimization path.
#'
#' @template arg_op
#' @template arg_opgetter_dob
#' @template arg_opgetter_eol
#' @return [character].
#' @export
#' @family optpath
getOptPathErrorMessages = function(op, dob, eol) {
  UseMethod("getOptPathErrorMessages")
}

#' Get exec-time vector from the optimization path.
#'
#' @template arg_op
#' @template arg_opgetter_dob
#' @template arg_opgetter_eol
#' @return [numeric].
#' @export
#' @family optpath
getOptPathExecTimes = function(op, dob, eol) {
  UseMethod("getOptPathExecTimes")
}

#' Get column from the optimization path.
#'
#' @template arg_op
#' @param name (`character(1)`)\cr
#'   Name of the column.
#' @template arg_opgetter_dob
#' @template arg_opgetter_eol
#' @return Single column as a vector.
#' @export
#' @family optpath
getOptPathCol = function(op, name, dob, eol) {
  UseMethod("getOptPathCol")
}

#' Get columns from the optimization path.
#'
#' @template arg_op
#' @param names [character]\cr
#'   Names of the columns.
#' @template arg_opgetter_dob
#' @template arg_opgetter_eol
#' @inheritParams as.data.frame.OptPathDF
#' @return [data.frame].
#' @export
#' @family optpath
getOptPathCols = function(op, names, dob, eol, row.names = NULL) {
  UseMethod("getOptPathCols")
}

#' Get index of the best element from optimization path.
#'
#' @template arg_op
#' @param y.name (`character(1)`)\cr
#'   Name of target value to decide which element is best.
#'   Default is `y.names[1]`.
#' @template arg_opgetter_dob
#' @template arg_opgetter_eol
#' @param ties (`character(1)`)\cr
#'   How should ties be broken when more than one optimal element is found?
#'   \dQuote{all}: return all indices,
#'   \dQuote{first}: return first optimal element in path,
#'   \dQuote{last}: return last optimal element in path,
#'   \dQuote{random}: return random optimal element in path.
#'   Default is \dQuote{last}.
#' @return [`integer`]
#'   Index or indices into path. See `ties`.
#' @export
#' @family optpath
#' @examples
#' ps = makeParamSet(makeNumericParam("x"))
#' op = makeOptPathDF(par.set = ps, y.names = "y", minimize = TRUE)
#' addOptPathEl(op, x = list(x = 1), y = 5)
#' addOptPathEl(op, x = list(x = 2), y = 3)
#' addOptPathEl(op, x = list(x = 3), y = 9)
#' addOptPathEl(op, x = list(x = 4), y = 3)
#' as.data.frame(op)
#' getOptPathBestIndex(op)
#' getOptPathBestIndex(op, ties = "first")
getOptPathBestIndex = function(op, y.name = op$y.names[1], dob = op$env$dob, eol = op$env$eol, ties = "last") {

  assertClass(op, "OptPath")
  assertChoice(y.name, choices = op$y.names)
  dob = asInteger(dob, any.missing = TRUE)
  eol = asInteger(eol, any.missing = TRUE)
  assertChoice(ties, c("all", "first", "last", "random"))
  life.inds = which(op$env$dob %in% dob & op$env$eol %in% eol)
  if (length(life.inds) == 0) {
    stop("No element found which matches dob and eol restrictions!")
  }
  y = getOptPathY(op, y.name)[life.inds]
  if (all(is.na(y))) {
    best.inds = life.inds
  } else {
    if (op$minimize[y.name]) {
      best.inds = which(min(y, na.rm = TRUE) == y)
    } else {
      best.inds = which(max(y, na.rm = TRUE) == y)
    }
    best.inds = life.inds[best.inds]
  }
  if (length(best.inds) > 1L) {
    if (ties == "all") {
      return(best.inds)
    } else if (ties == "first") {
      return(best.inds[1])
    } else if (ties == "last") {
      return(best.inds[length(best.inds)])
    } else if (ties == "random") {
      return(best.inds[sample(length(best.inds), 1L)])
    }
  } else {
    return(best.inds)
  }
}

#' Get indices of pareto front of optimization path.
#'
#' @template arg_op
#' @param y.names [character]\cr
#'   Names of performance measures to construct pareto front for.
#'   Default is all performance measures.
#' @template arg_opgetter_dob
#' @template arg_opgetter_eol
#' @param index (`logical(1)`)\cr
#'   Return indices into path of front or y-matrix of nondominated points?
#'   Default is `FALSE`.
#' @return `matrix` | `integer`. Either matrix (with named columns) of points of
#'   front in objective space or indices into path for front.
#' @export
#' @family optpath
#' @examples
#' ps = makeParamSet(makeNumericParam("x"))
#' op = makeOptPathDF(par.set = ps, y.names = c("y1", "y2"), minimize = c(TRUE, TRUE))
#' addOptPathEl(op, x = list(x = 1), y = c(5, 3))
#' addOptPathEl(op, x = list(x = 2), y = c(2, 4))
#' addOptPathEl(op, x = list(x = 3), y = c(9, 4))
#' addOptPathEl(op, x = list(x = 4), y = c(4, 9))
#' as.data.frame(op)
#' getOptPathParetoFront(op)
#' getOptPathParetoFront(op, index = TRUE)
getOptPathParetoFront = function(op, y.names = op$y.names, dob = op$env$dob, eol = op$env$eol, index = FALSE) {

  assertClass(op, "OptPath")
  assertCharacter(y.names, min.len = 2L)
  assertSubset(y.names, op$y.names, empty.ok = FALSE)
  dob = asInteger(dob, any.missing = TRUE)
  eol = asInteger(eol, any.missing = TRUE)
  assertFlag(index, na.ok = TRUE)
  requirePackages("emoa", default.method = "load")
  life.inds = which(op$env$dob %in% dob & op$env$eol %in% eol)
  if (length(life.inds) == 0L) {
    stop("No element found which matches dob and eol restrictions!")
  }
  y = getOptPathY(op, y.names, drop = FALSE)[life.inds, , drop = FALSE]
  # multiply columns with -1 if maximize
  k = ifelse(op$minimize, 1, -1)
  y2 = t(y) * k
  # is_dominated has kind of buggy behavoiur if y2 is a row
  # (it hinks, we have a 1-dimensional optimization prob und returns the min index)
  # so we have to treat this case manually
  if (nrow(y2) == 1L) {
    nondom = 1L
  } else {
    nondom = which(!emoa::is_dominated(y2))
  }
  if (index) {
    return(life.inds[nondom])
  } else {
    return(y[nondom, , drop = FALSE])
  }
}