1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
# Check the given X and Y limit list. Each list can have 2 elements:
# XSpace and YSpace. If the element is NULL, it is set, otherwise it is
# checked. If the dimensionality of X and Y space is greater than 2, the limits
# are set to NULL. The same happens if there is a discrete variable in the 2D case.
# We don't need limits in this cases.
# If the dimensionality is 1 for X or Y Space, for this space the ylim is NULL.
getOptPathLims = function(xlim, ylim, op.x, op.y, iters, scale) {
assertList(xlim)
assertList(ylim)
# First, we calculate for XSpace and YSpace plot the limits
# Nasty ifs, since this can be one of half a dozen plots, and for every
# plot we have different defaults
for (space in c("XSpace", "YSpace")) {
op.frame = if (space == "XSpace") op.x else op.y
dim = ncol(op.frame)
classes = BBmisc::vcapply(op.frame, class)
# For Multi-D Plot, no limits are needed. Warn, if the user specified some
# and set to NULL
if (dim > 2L) {
if (!is.null(xlim[[space]])) {
warning(paste("You specified xlims for multi-D plot in",
space, "but xlims for this plots are not supported."))
}
if (!is.null(ylim[[space]])) {
warning("You specified ylims for multi-D plot in",
space, "but ylims for this plots are not supported.")
}
xlim[[space]] = NULL
ylim[[space]] = NULL
next
}
# For 1Dnumeric this is easy - either check user input
# or set to min - scale * range and max + scale * range
if (dim == 1L && (classes == "numeric")) {
if (is.null(xlim[[space]])) {
xlim[[space]] = range(op.frame[, 1L])
xlim[[space]] = c(-1, 1) * scale * abs(diff(xlim[[space]])) + xlim[[space]]
} else {
assertNumeric(xlim[[space]], len = 2L, any.missing = FALSE)
}
if (!is.null(ylim[[space]])) {
warning("You specified ylims for 1D numeric plot in",
space, "but ylims for this plots are not supported.")
}
ylim[[space]] = NULL
next
}
# limits for barplot (1D discrete case)
# Here, xlims are not meaningful, ylim is the modal value
if (dim == 1L && classes == "factor") {
if (!is.null(xlim[[space]])) {
warning(paste("You specified xlims for 1D barplot in",
space, "but xlims for this plots are not supported."))
}
xlim[[space]] = NULL
if (is.null(ylim[[space]])) {
ylim[[space]] = c(0, max(table(op.frame)))
} else {
assertNumeric(ylim[[space]], len = 2L, any.missing = FALSE)
}
next
}
# For dim = 2L we have to check for both variables, if they are discrete
# for discrete, we don't want limits, for factors they are not meaningful
if (dim == 2L) {
if (classes[1L] == "numeric") {
if (is.null(xlim[[space]])) {
xlim[[space]] = range(op.frame[, 1L])
xlim[[space]] = c(-1, 1) * scale * abs(diff(xlim[[space]])) + xlim[[space]]
} else {
assertNumeric(xlim[[space]], len = 2L, any.missing = FALSE)
}
} else {
if (!is.null(xlim[[space]])) {
warning(paste("You specified xlims for 2D scatter plot in",
space, "but the variable is discrete here and therefor xlims are not supported."))
}
xlim[[space]] = NULL
}
if (classes[2L] == "numeric") {
if (is.null(ylim[[space]])) {
ylim[[space]] = range(op.frame[, 2L])
ylim[[space]] = c(-1, 1) * scale * abs(diff(ylim[[space]])) + ylim[[space]]
} else {
assertNumeric(ylim[[space]], len = 2L, any.missing = FALSE)
}
} else {
if (!is.null(ylim[[space]])) {
warning(paste("You specified ylims for 2D scatter plot in",
space, "but the variable is discrete here and therefor ylims are not supported."))
}
ylim[[space]] = NULL
}
}
}
# For now I say: The code for checking and limits for the over.time.plots
# is way to bad and very complicated. It's not worth the afford atm, since in
# 99% the defaults of ggplot are the way to go.
# the user can get the plots via render, he has to set the limits here
# for himself
# NOTE: This code is not finished!
# # Now we need the limits for over.time plots. This is a bit complicated,
# # since we can have a list of over.time plots, so we also can get
# # a list of lims.
# for (space in c("x.over.time", "y.over.time")) {
#
# over.time.vars =
#
# # First, ensure we have lists.
# if (!is.list(xlim[[space]]))
# xlim[[space]] = list(xlim[[space]])
#
# if (!is.list(ylim[[space]]))
# ylim[[space]] = list(ylim[[space]])
#
# # Here, you allways have to specify limits for every plot - if you specify
# # some limits.
# assertList(ylim[[space]], len = )
# assertList(ylim[[space]],
#
# for (i in seq_along(get(space))) {
#
# op.frame = if (space == "x.over.time") op.x else op.y
# var.names = if (space == "x.over.time") x.over.time[[i]] else y.over.time[[i]]
# op.frame = op.frame[, var.names, drop = FALSE]
#
# # lim.x is iteration number here. If NULL, use ggplot defaults, else check.
# if (is.null(xlim[[space]][[i]])) {
# xlim[[space]][[i]] = c(NA_real_, NA_real_)
# } else {
# asInteger(xlim[[space]][[i]], len = 2)
# }
#
# # lim.y as minimum and maximum of all plotted variables:
# if (is.null(ylim[[space]][[i]])) {
# ylim[[space]][[i]] = range(op.frame)
# ylim[[space]][[i]] = c(-1, 1) * scale * abs(diff(ylim[[space]][[i]])) + ylim[[space]][[i]]
# } else {
# assertNumeric(ylim[[space]][[i]], len = 2L, any.missing = FALSE)
# }
#
# }
# }
return(list(xlim = xlim, ylim = ylim))
}
# Function to impute missing values.
imputeMissingValues = function(x, impute.scale, impute.value) {
na.index = which(is.na(x))
if (length(na.index) > 0) {
if (inherits(x, "numeric")) {
x[na.index] = max(x, na.rm = TRUE) + impute.scale * (diff(range(x, na.rm = TRUE)))
}
if (inherits(x, "factor")) {
levels(x) = c(levels(x), impute.value)
x[na.index] = impute.value
}
}
return(x)
}
# subset rows and cols of the opt.path and return list with data.frames for
# x and y space and the subsets.
# returns list with dataframes for x and y space, vectors for dob, type and alpha
# character vector for x and y names
getAndSubsetPlotData = function(op, iters, subset.obs, subset.vars, subset.targets,
marked = NULL, alpha = TRUE, impute.scale = 0.05, impute.value = "missing", ...) {
# extract initial information and the data from the opt.path
x.names = colnames(getOptPathX(op))
y.names = op$y.names
dim.x = length(x.names)
iters.max = max(getOptPathDOB(op))
op.x = as.data.frame(op, include.x = TRUE, include.y = FALSE,
include.rest = FALSE, dob = 0:max(iters), eol = c(min(iters):iters.max, NA))
op.y = as.data.frame(op, include.x = FALSE, include.y = TRUE,
include.rest = FALSE, dob = 0:max(iters), eol = c(min(iters):iters.max, NA))
op.rest = as.data.frame(op, include.x = FALSE, include.y = FALSE,
include.rest = TRUE, dob = 0:max(iters), eol = c(min(iters):iters.max, NA))
dob = getOptPathDOB(op, dob = 0:max(iters), eol = c((max(iters) + 1):iters.max, NA))
# mark best point / pareto front if marked = "best"
if (is.character(marked)) {
if (length(y.names) == 1) {
marked = getOptPathBestIndex(op)
} else {
marked = getOptPathParetoFront(op, index = TRUE)
}
}
# make sure that only points are marked that are alive at this iteration
marked = marked[marked <= nrow(op.x)]
# set alpha and type values
.alpha = if (alpha && max(iters) > 0) {
normalize(dob, "range", range = c(1 / (max(iters) + 1), 1))
} else {
rep(1, length(dob))
}
.type = as.factor(ifelse(dob == 0, "init", ifelse(dob == max(iters), "prop", "seq")))
.type = factor(.type, levels = c("init", "seq", "prop", "marked"))
if (!is.null(marked)) {
.type[marked] = "marked"
}
.alpha = pmax(0.1, .alpha)
# Check and calculate the subsets
if (missing(subset.obs)) {
subset.obs = 1:nrow(op.x)
}
assertIntegerish(subset.obs, lower = 1, upper = getOptPathLength(op), unique = TRUE,
any.missing = FALSE)
# use only indices avaible in the current iterations
subset.obs = subset.obs[subset.obs <= nrow(op.x)]
if (missing(subset.vars)) {
subset.vars = x.names
}
if (is.numeric(subset.vars)) {
assertIntegerish(subset.vars, lower = 1, upper = dim.x, unique = TRUE, any.missing = FALSE)
}
else {
assertSubset(subset.vars, x.names)
}
if (missing(subset.targets)) {
subset.targets = y.names
}
if (is.numeric(subset.targets)) {
assertIntegerish(subset.targets, lower = 1, upper = getOptPathLength(op), unique = TRUE,
any.missing = FALSE)
}
else {
assertSubset(subset.targets, y.names)
}
# impute missing values - don't impute in op.rest!
op.x = BBmisc::dapply(op.x, fun = imputeMissingValues, impute.scale = impute.scale,
impute.value = impute.value)
op.y = BBmisc::dapply(op.y, fun = imputeMissingValues, impute.scale = impute.scale,
impute.value = impute.value)
# now subset everything
op.x = op.x[subset.obs, subset.vars, drop = FALSE]
op.y = op.y[subset.obs, subset.targets, drop = FALSE]
op.rest = op.rest[subset.obs, -(1:2), drop = FALSE]
dob = dob[subset.obs]
.alpha = .alpha[subset.obs]
.type = .type[subset.obs]
x.names = if (is.numeric(subset.vars)) x.names[subset.vars] else subset.vars
y.names = if (is.numeric(subset.targets)) y.names[subset.targets] else subset.targets
return(
list(
op.x = op.x,
op.y = op.y,
op.rest = op.rest,
dob = dob,
.alpha = .alpha,
.type = .type,
x.names = x.names,
y.names = y.names,
rest.names = names(op.rest)
)
)
}
# Helper to get cumulated exec.time
getOptPathColAtTimes = function(op, times) {
requirePackages("plyr")
if (!is.data.frame(op)) {
op = as.data.frame(op)
}
assertNumeric(op$exec.time)
op$exec.time.sum = cumsum(op$exec.time)
op$finished = c(rep(FALSE, times = nrow(op) - 1), TRUE)
plyr::adply(times, 1, getOptPathColAtTime, op = op)
}
getOptPathColAtTime = function(op.df, time) {
col = op.df[which.last(op.df$exec.time.sum <= time), ]
if (nrow(col) == 1) col$time = time
col
}
|