1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/LearnerParam.R, R/makeLearnerParamFuns.R
\name{LearnerParam}
\alias{LearnerParam}
\alias{makeNumericLearnerParam}
\alias{makeNumericVectorLearnerParam}
\alias{makeIntegerLearnerParam}
\alias{makeIntegerVectorLearnerParam}
\alias{makeDiscreteLearnerParam}
\alias{makeDiscreteVectorLearnerParam}
\alias{makeLogicalLearnerParam}
\alias{makeLogicalVectorLearnerParam}
\alias{makeUntypedLearnerParam}
\alias{makeFunctionLearnerParam}
\title{Create a description object for a parameter of a machine learning
algorithm.}
\usage{
makeNumericLearnerParam(
id,
lower = -Inf,
upper = Inf,
allow.inf = FALSE,
default,
when = "train",
requires = NULL,
tunable = TRUE,
special.vals = list()
)
makeNumericVectorLearnerParam(
id,
len = as.integer(NA),
lower = -Inf,
upper = Inf,
allow.inf = FALSE,
default,
when = "train",
requires = NULL,
tunable = TRUE,
special.vals = list()
)
makeIntegerLearnerParam(
id,
lower = -Inf,
upper = Inf,
default,
when = "train",
requires = NULL,
tunable = TRUE,
special.vals = list()
)
makeIntegerVectorLearnerParam(
id,
len = as.integer(NA),
lower = -Inf,
upper = Inf,
default,
when = "train",
requires = NULL,
tunable = TRUE,
special.vals = list()
)
makeDiscreteLearnerParam(
id,
values,
default,
when = "train",
requires = NULL,
tunable = TRUE,
special.vals = list()
)
makeDiscreteVectorLearnerParam(
id,
len = as.integer(NA),
values,
default,
when = "train",
requires = NULL,
tunable = TRUE,
special.vals = list()
)
makeLogicalLearnerParam(
id,
default,
when = "train",
requires = NULL,
tunable = TRUE,
special.vals = list()
)
makeLogicalVectorLearnerParam(
id,
len = as.integer(NA),
default,
when = "train",
requires = NULL,
tunable = TRUE,
special.vals = list()
)
makeUntypedLearnerParam(
id,
default,
when = "train",
requires = NULL,
tunable = TRUE,
special.vals = list()
)
makeFunctionLearnerParam(
id,
default,
when = "train",
requires = NULL,
tunable = TRUE,
special.vals = list()
)
}
\arguments{
\item{id}{(\code{character(1)})\cr
Name of parameter.}
\item{lower}{(\code{numeric} | \code{expression})\cr
Lower bounds. A singe value of
length 1 is automatically replicated to \code{len} for vector parameters. If
\code{len = NA} you can only pass length-1 scalars. Default is \code{-Inf}.}
\item{upper}{(\code{numeric} | \code{expression})\cr
Upper bounds. A singe value of
length 1 is automatically replicated to \code{len} for vector parameters. If
\code{len = NA} you can only pass length-1 scalars. Default is \code{Inf}.}
\item{allow.inf}{(\code{logical(1)})\cr
Allow infinite values for numeric and
numericvector params to be feasible settings. Default is \code{FALSE}.}
\item{default}{(any concrete value | \code{expression})\cr
Default value used in
learner. Note: When this is a discrete parameter make sure to use a VALUE
here, not the NAME of the value. If this argument is missing, it means no
default value is available.}
\item{when}{(\code{character(1)})\cr
Specifies when parameter is used in the learner: \dQuote{train},
\dQuote{predict} or \dQuote{both}. Default is \dQuote{train}.}
\item{requires}{(\code{NULL} | \code{call} | \code{expression})\cr
States requirements on
other parameters' values, so that setting this parameter only makes sense
if its requirements are satisfied (dependent parameter). Can be an object
created either with \code{expression} or \code{quote}, the former type is
auto-converted into the later. Only really useful if the parameter is
included in a (ParamSet()). Default is \code{NULL} which means no requirements.}
\item{tunable}{(\code{logical(1)})\cr
Is this parameter tunable? Defining a
parameter to be not-tunable allows to mark arguments like, e.g.,
\dQuote{verbose} or other purely technical stuff. Note that this flag is
most likely not respected by optimizing procedures unless stated otherwise.
Default is \code{TRUE} (except for \code{untyped}, \code{function}, \code{character} and
\code{characterVector}) which means it is tunable.}
\item{special.vals}{(\code{list()})\cr
A list of special values the parameter can
except which are outside of the defined range. Default is an empty list.}
\item{len}{(\code{integer(1)})\cr
Length of vector parameter.
Can be set to \code{NA} to define a vector with unspecified length.}
\item{values}{(\code{vector} | \code{list} | \code{expression})\cr
Possible discrete values.
Instead of using a vector of atomic values, you are also allowed to pass a
list of quite \dQuote{complex} R objects, which are used as discrete
choices. If you do the latter, the elements must be uniquely named, so that
the names can be used as internal representations for the choice.}
}
\value{
\code{\link[=LearnerParam]{LearnerParam()}}.
}
\description{
This specializes \code{\link[=Param]{Param()}} by adding a few more attributes, like
a default value, whether it refers to a training or a predict function, etc.
Note that you can set \code{length} to \code{NA}
The S3 class is a \code{\link[=Param]{Param()}} which additionally stores these elements:
\describe{
\item{when \code{character(1)}}{See argument of same name.}
}
See the note in \code{\link[=Param]{Param()}} about being able to pass expressions to certain arguments.
}
|