1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
\documentclass[nojss]{jss}
\usepackage{dsfont}
\usepackage{bbm}
\usepackage{amsfonts}
\usepackage{wasysym}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% declarations for jss.cls %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% just as usual
\author{Robin K. S. Hankin\\University of Stirling}
\title{Additive Integer Partitions in \proglang{R}}
%\VignetteIndexEntry{Additive Integer Partitions}
%% for pretty printing and a nice hypersummary also set:
\Plainauthor{Robin K. S. Hankin}
\Plaintitle{Integer Partitions in R}
\Shorttitle{Integer Partitions in R}
%% an abstract and keywords
\Abstract{
To cite the \pkg{partitions} package in publications, please
use~\cite{hankin2006}. This vignette introduces the
\pkg{partitions} package of \proglang{R} routines, for numerical
calculation of integer partitions. Functionality for unrestricted
partitions, unequal partitions, and restricted partitions is
provided in a small package that accompanies this note; the emphasis
is on terse, efficient \proglang{C} code. A simple combinatorial
problem is solved using the package.}
\Keywords{Integer partitions, restricted partitions, unequal
partitions, \proglang{R}}
\Plainkeywords{Integer partitions, restricted partitions, unequal
partitions, R}
%% publication information
%% NOTE: This needs to filled out ONLY IF THE PAPER WAS ACCEPTED.
%% If it was not (yet) accepted, leave them commented.
%% \Volume{13}
%% \Issue{9}
%% \Month{September}
%% \Year{2004}
%% \Submitdate{2004-09-29}
%% \Acceptdate{2004-09-29}
%% The address of (at least) one author should be given
%% in the following format:
\Address{
Robin K. S. Hankin\\
University of Stirling\\
Scotland\\
\email{hankin.robin@gmail.com}\\
{\rule{10mm}{0mm}}\hfill\includegraphics[width=1in]{\Sexpr{system.file("help/figures/partitions.png",package="partitions")}}
}
%% It is also possible to add a telephone and fax number
%% before the e-mail in the following format:
%% Telephone: +43/1/31336-5053
%% Fax: +43/1/31336-734
%% for those who use Sweave please include the following line (with % symbols):
%% need no \usepackage{Sweave.sty}
%% end of declarations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\SweaveOpts{echo=FALSE}
\begin{document}
\newsymbol\leqslant 1336
\hfill\includegraphics[width=1in]{\Sexpr{system.file("help/figures/partitions.png",package="partitions")}}
\section{Introduction}
A {\em partition} of a positive integer~$n$ is a non-increasing
sequence of positive integers~$\lambda_1,\lambda_2,\ldots,\lambda_r$
such that~$\sum_{i=1}^r\lambda_i=n$. The
partition~$\left(\lambda_1,\ldots,\lambda_r\right)$ is denoted
by~$\lambda$, and we write~$\lambda\vdash n$ to signify that~$\lambda$
is a partition of~$n$. If, for~$1\leqslant j\leqslant n$,
exactly~$f_j$ elements of~$\lambda$ are equal to~$j$, we
write~$\lambda=\left(1^{f_1},2^{f_2},\ldots,n^{f_n}\right)$; this
notation emphasises the number of times a particular integer occurs as
a part. The standard reference is \citet{andrews1998}.
The partition function $p(n)$ is the number of distinct partitions
of~$n$. Thus, because
\[
5=4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1\] is a complete enumeration of
the partitions of 5, $p(5)=7$ (recall that order is unimportant: a
partition is defined to be a non-increasing sequence).
%Euler proved that
%\begin{equation}
%p(n)=\sum_{1\leq\frac{\left(3k^2\pm k\right)}{2}\leq n}\left(-1\right)^{k-1}
%p\left(n-\left(3k^2\pm k\right)/2\right)
%\end{equation}
Various restrictions on the nature of a partition are often
considered. One is to require that the~$\lambda_i$ are distinct; the
number of such partitions is denoted~$q(n)$. Because
\[5=4+1=3+2\] is the complete subset of partitions of~$5$ with no
repetitions, $q(5)=3$.
%It is known \citep{abramowitz1965} that
%\begin{equation}
%\sum_{0\leq\frac{\left(3k^2\pm k\right)}{2}\leq n}\left(-1\right)^{k}
%q\left(n-\left(3k^2\pm k\right)/2\right)=\left\{
%\begin{array}{c}
%\left(-1\right)^r\qquad\mbox{if~$n=3r^2\pm r$}\\
%0\qquad\mbox{otherwise}
%\end{array}
%\right.
%\end{equation}
One may also require that~$n$ be split into {\em exactly} $m$ parts.
The number of partitions so restricted may be denoted~$r(m,n)$.
\section[Package partitions in use]{Package \pkg{partitions} in use}
<<echo=FALSE,print=FALSE>>=
<<results=hide>>=
require(partitions)
@
The \proglang{R}~\citep{rmanual} package \pkg{partitions} associated
with this paper may be used to evaluate the above functions
numerically, and to enumerate the partitions they count. In the
package, the number of partitions is given by \code{P()}, and the
number of unequal partitions by \code{Q()}. For example,
<<echo=TRUE>>=
P(100)
@
agreeing with the value given by~\citet{abramowitz1965}. The unequal
partitions of an integer are enumerated by function \code{diffparts()}:
<<echo=TRUE>>=
diffparts(10)
@
where the columns are the partitions. Finally, function
\code{restrictedpartitions()} enumerates the partitions of an integer
into a specified number of parts.
\subsection{A combinatorial example}
Consider random sampling, with replacement, from an alphabet of~$a$
letters. How many draws are required to give a~95\% probability of
choosing each letter at least once? I show below how the
\pkg{partitions} package may be used to answer this question exactly.
A little thought shows that the number of ways to draw each letter at
least once in~$n$ draws is
\begin{equation}
N=
\sum_{\lambda\vdash n;a}
\frac{a!}{\prod_{i=1}^{r} f_i!}\cdot
\frac{n!}{\prod_{j=1}^{n}\lambda_i!}
\end{equation}
where the sum extends over partitions~$\lambda$ of~$n$ into
exactly~$a$ parts; the first term gives the number of ways of
assigning a partition to letters; the second gives the number of
distinct arrangements.
The corresponding \proglang{R} idiom is to define a nonce function
\code{f()} that returns the product of the two denominators, and to
sum the requisite parts by applying \code{f()} over the appropriate
restricted partitions. The probability of getting all~$a$ letters
in~$n$ draws is thus~$N/a^n$, computed by function \code{prob()}:
<<echo=TRUE>>=
f <- function(x){prod(factorial(x),factorial(tabulate(x)))}
prob <- function(a,n){
jj <- restrictedparts(n,a,include.zero=FALSE)
N <- factorial(a)*factorial(n)*sum(1/apply(jj,2,f))
return(N/a^n)
}
@
In the case of~$a=4$, we obtain~$n=16$
because~$\mbox{\code{prob(4,15)}}\simeq\mbox{\Sexpr{round(prob(4,15),digits=3)}}$
and~$\mbox{\code{prob(4,16)}}\simeq\mbox{\Sexpr{round(prob(4,16),digits=3)}}$.
\section{Conclusions}
The \pkg{partitions} package was developed to answer the combinatorial
word question discussed above: it does so using fast \proglang{C}
code. Further work would include the enumeration of compositions and
vector compositions.
\subsection*{Acknowledgement}
I would like to acknowledge the many stimulating and helpful comments
made by the R-help list while preparing the package.
\bibliography{partitions}
\end{document}
|