File: MOB.Rout.save

package info (click to toggle)
r-cran-party 1.3-5-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,748 kB
  • sloc: ansic: 3,164; sh: 56; makefile: 2
file content (265 lines) | stat: -rw-r--r-- 8,417 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

> require("party")
Loading required package: party
Loading required package: grid
Loading required package: zoo

Attaching package: ‘zoo’

The following objects are masked from ‘package:base’:

    as.Date, as.Date.numeric

Loading required package: sandwich
Loading required package: strucchange
Loading required package: modeltools
Loading required package: stats4

> options(useFancyQuotes = FALSE)

> library("party")

> data("BostonHousing", package = "mlbench")

> BostonHousing$lstat <- log(BostonHousing$lstat)

> BostonHousing$rm <- BostonHousing$rm^2

> BostonHousing$chas <- factor(BostonHousing$chas, levels = 0:1, 
+     labels = c("no", "yes"))

> BostonHousing$rad <- factor(BostonHousing$rad, ordered = TRUE)

> ctrl <- mob_control(alpha = 0.05, bonferroni = TRUE, 
+     minsplit = 40, objfun = deviance, verbose = TRUE)

> fmBH <- mob(medv ~ lstat + rm | zn + indus + chas + 
+     nox + age + dis + rad + tax + crim + b + ptratio, data = BostonHousing, 
+     control =  .... [TRUNCATED] 

-------------------------------------------
Fluctuation tests of splitting variables:
                    zn        indus         chas          nox          age
statistic 3.363356e+01 6.532322e+01 2.275635e+01 8.136281e+01 3.675850e+01
p.value   1.023987e-04 1.363602e-11 4.993053e-04 3.489797e-15 2.263798e-05
                   dis          rad          tax         crim            b
statistic 6.848533e+01 1.153641e+02 9.068440e+01 8.655065e+01 3.627629e+01
p.value   2.693904e-12 7.087680e-13 2.735524e-17 2.356348e-16 2.860686e-05
               ptratio
statistic 7.221524e+01
p.value   3.953623e-13

Best splitting variable: tax
Perform split? yes
-------------------------------------------

Node properties:
tax <= 432; criterion = 1, statistic = 115.364

-------------------------------------------
Fluctuation tests of splitting variables:
                    zn      indus      chas          nox        age
statistic 27.785009791 21.3329346 8.0272421 23.774323202 11.9204284
p.value    0.001494064  0.0285193 0.4005192  0.009518732  0.7666366
                   dis          rad          tax         crim         b
statistic 24.268011081 50.481593270 3.523250e+01 3.276813e+01 9.0363245
p.value    0.007601532  0.003437763 4.275527e-05 1.404487e-04 0.9871502
               ptratio
statistic 4.510680e+01
p.value   3.309747e-07

Best splitting variable: ptratio
Perform split? yes
-------------------------------------------

Node properties:
ptratio <= 15.2; criterion = 1, statistic = 50.482

-------------------------------------------
Fluctuation tests of splitting variables:
                    zn       indus        chas         nox         age
statistic 3.233350e+01 22.26864036 12.93407112 22.10510234 20.41295354
p.value   1.229678e-04  0.01504788  0.05259509  0.01622098  0.03499731
                 dis          rad          tax        crim         b
statistic 17.7204735 5.526565e+01 2.879128e+01 20.28503194 6.5549665
p.value    0.1091769 7.112214e-04 6.916307e-04  0.03706934 0.9999522
               ptratio
statistic 4.789850e+01
p.value   4.738855e-08

Best splitting variable: ptratio
Perform split? yes
-------------------------------------------

Node properties:
ptratio <= 19.6; criterion = 1, statistic = 55.266

-------------------------------------------
Fluctuation tests of splitting variables:
                 zn      indus      chas        nox       age        dis
statistic 14.971474 14.6477733 7.1172962 14.3455158 8.2176363 16.1112185
p.value    0.280361  0.3134649 0.5405005  0.3467974 0.9906672  0.1847818
                  rad          tax     crim         b    ptratio
statistic 43.17824350 3.447271e+01 9.340075 8.7773142 10.8469969
p.value    0.03281124 4.281939e-05 0.952996 0.9772696  0.8202694

Best splitting variable: tax
Perform split? yes
-------------------------------------------

Node properties:
tax <= 265; criterion = 1, statistic = 43.178

-------------------------------------------
Fluctuation tests of splitting variables:
                 zn     indus     chas       nox        age       dis
statistic 11.998039 7.3971233 7.227770 9.2936189 14.3023962 8.9239826
p.value    0.574642 0.9931875 0.522447 0.9119621  0.2886603 0.9389895
                 rad        tax       crim         b    ptratio
statistic 33.1746444 16.6666129 11.7143758 9.9050903 11.5927528
p.value    0.3926249  0.1206412  0.6153455 0.8539893  0.6328381

Best splitting variable: tax
Perform split? no
-------------------------------------------

-------------------------------------------
Fluctuation tests of splitting variables:
                  zn     indus         chas         nox       age        dis
statistic 10.9187926 9.0917078 2.754081e+01 17.39203006 4.6282349 11.9581600
p.value    0.7091039 0.9172303 4.987667e-05  0.08922543 0.9999992  0.5607267
                rad        tax     crim        b   ptratio
statistic 0.2557803 10.9076165 3.711175 3.158329 9.8865054
p.value   1.0000000  0.7106612 1.000000 1.000000 0.8410064

Best splitting variable: chas
Perform split? yes
-------------------------------------------

Splitting factor variable, objective function: 
 no 
Inf 

No admissable split found in 'chas'

> fmBH
1) tax <= 432; criterion = 1, statistic = 115.364
  2) ptratio <= 15.2; criterion = 1, statistic = 50.482
    3)*  weights = 72 
Terminal node model
Linear model with coefficients:
(Intercept)        lstat           rm  
     9.2349      -4.9391       0.6859  

  2) ptratio > 15.2
    4) ptratio <= 19.6; criterion = 1, statistic = 55.266
      5) tax <= 265; criterion = 1, statistic = 43.178
        6)*  weights = 63 
Terminal node model
Linear model with coefficients:
(Intercept)        lstat           rm  
     3.9637      -2.7663       0.6881  

      5) tax > 265
        7)*  weights = 162 
Terminal node model
Linear model with coefficients:
(Intercept)        lstat           rm  
    -1.7984      -0.2677       0.6539  

    4) ptratio > 19.6
      8)*  weights = 56 
Terminal node model
Linear model with coefficients:
(Intercept)        lstat           rm  
    17.5865      -4.6190       0.3387  

1) tax > 432
  9)*  weights = 153 
Terminal node model
Linear model with coefficients:
(Intercept)        lstat           rm  
    68.2971     -16.3540      -0.1478  


> plot(fmBH)

> coef(fmBH)
  (Intercept)      lstat         rm
3    9.234880  -4.939096  0.6859136
6    3.963720  -2.766287  0.6881287
7   -1.798387  -0.267707  0.6538864
8   17.586490  -4.618975  0.3386744
9   68.297087 -16.354006 -0.1477939

> summary(fmBH, node = 7)

Call:
NULL

Weighted Residuals:
   Min     1Q Median     3Q    Max 
-9.092  0.000  0.000  0.000 10.236 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -1.79839    2.84702  -0.632    0.529    
lstat       -0.26771    0.69581  -0.385    0.701    
rm           0.65389    0.03757  17.404   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.652 on 159 degrees of freedom
Multiple R-squared:  0.8173,	Adjusted R-squared:  0.815 
F-statistic: 355.6 on 2 and 159 DF,  p-value: < 2.2e-16


> sctest(fmBH, node = 7)
                 zn     indus     chas       nox        age       dis
statistic 11.998039 7.3971233 7.227770 9.2936189 14.3023962 8.9239826
p.value    0.574642 0.9931875 0.522447 0.9119621  0.2886603 0.9389895
                 rad        tax       crim         b    ptratio
statistic 33.1746444 16.6666129 11.7143758 9.9050903 11.5927528
p.value    0.3926249  0.1206412  0.6153455 0.8539893  0.6328381

> mean(residuals(fmBH)^2)
[1] 12.03518

> logLik(fmBH)
'log Lik.' -1310.506 (df=24)

> AIC(fmBH)
[1] 2669.013

> nt <- NROW(coef(fmBH))

> nk <- NCOL(coef(fmBH))

> data("PimaIndiansDiabetes2", package = "mlbench")

> PimaIndiansDiabetes <- na.omit(PimaIndiansDiabetes2[, 
+     -c(4, 5)])

> fmPID <- mob(diabetes ~ glucose | pregnant + pressure + 
+     mass + pedigree + age, data = PimaIndiansDiabetes, model = glinearModel, 
+     famil .... [TRUNCATED] 

> plot(fmPID)
Loading required package: vcd

> coef(fmPID)
  (Intercept)    glucose
2  -10.999447 0.06456780
4   -6.573067 0.04504490
5   -3.318569 0.02748038

> exp(coef(fmPID)[, 2])
       2        4        5 
1.066698 1.046075 1.027861 

> risk <- round(100 * (exp(coef(fmPID)[, 2]) - 1), digits = 1)

 *** Run successfully completed ***
> proc.time()
   user  system elapsed 
  3.548   0.080   3.636