1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
## simple wrapper function to specify fitter and return class
glmtree <- function(formula, data, subset, na.action, weights, offset, cluster,
family = gaussian, epsilon = 1e-8, maxit = 25, method = "glm.fit", ...)
{
## use dots for setting up mob_control
control <- mob_control(...)
## keep call
cl <- match.call(expand.dots = TRUE)
## extend formula if necessary
f <- Formula::Formula(formula)
if(length(f)[2L] == 1L) {
attr(f, "rhs") <- c(list(1), attr(f, "rhs"))
formula[[3L]] <- formula(f)[[3L]]
} else {
f <- NULL
}
## process family
if(inherits(family, "family")) {
fam <- TRUE
} else {
fam <- FALSE
if(is.character(family)) family <- get(family)
if(is.function(family)) family <- family()
}
## distinguish whether glm should be fixed for case weights or not
glmfit0 <- function(y, x, start = NULL, weights = NULL, offset = NULL, cluster = NULL, ...,
estfun = FALSE, object = FALSE, caseweights = TRUE)
{
glmfit(y = y, x = x, start = start, weights = weights, offset = offset, cluster = cluster, ...,
estfun = estfun, object = object, caseweights = control$caseweights)
}
## call mob
m <- match.call(expand.dots = FALSE)
if(!is.null(f)) m$formula <- formula
m$fit <- glmfit0
m$control <- control
m$epsilon <- epsilon
m$maxit <- maxit
m$method <- method
if("..." %in% names(m)) m[["..."]] <- NULL
if(!fam) m$family <- family
m[[1L]] <- as.call(quote(partykit::mob))
rval <- eval(m, parent.frame())
## extend class and keep original call
rval$info$call <- cl
rval$info$family <- family$family
class(rval) <- c("glmtree", class(rval))
return(rval)
}
## actual fitting function for mob()
glmfit <- function(y, x, start = NULL, weights = NULL, offset = NULL, cluster = NULL, ...,
estfun = FALSE, object = FALSE, caseweights = TRUE)
{
## catch control arguments
args <- list(...)
ctrl <- list()
for(n in c("epsilon", "maxit")) {
if(n %in% names(args)) {
ctrl[[n]] <- args[[n]]
args[[n]] <- NULL
}
}
args$control <- do.call("glm.control", ctrl)
## add intercept-only regressor matrix (if missing)
## NOTE: does not have terms/formula
if(is.null(x)) x <- matrix(1, nrow = NROW(y), ncol = 1L,
dimnames = list(NULL, "(Intercept)"))
## call glm fitting function (defaulting to glm.fit)
glm.method <- if("method" %in% names(args)) args[["method"]] else "glm.fit"
args[["method"]] <- NULL
args <- c(list(x = x, y = y, start = start, weights = weights, offset = offset), args)
z <- do.call(glm.method, args)
## degrees of freedom
df <- z$rank
if(z$family$family %in% c("gaussian", "Gamma", "inverse.gaussian")) df <- df + 1
if(substr(z$family$family, 1L, 5L) != "quasi") objfun <- z$aic/2 - df else objfun <- z$deviance
## list structure
rval <- list(
coefficients = z$coefficients,
objfun = objfun,
estfun = NULL,
object = NULL
)
## add estimating functions (if desired)
if(estfun) {
wres <- as.vector(z$residuals) * z$weights
dispersion <- if(substr(z$family$family, 1L, 17L) %in% c("poisson", "binomial", "Negative Binomial")) {
1
} else {
## for case weights: fix dispersion estimate
if(!is.null(weights) && caseweights) {
sum(wres^2/weights, na.rm = TRUE)/sum(z$weights, na.rm = TRUE)
} else {
sum(wres^2, na.rm = TRUE)/sum(z$weights, na.rm = TRUE)
}
}
rval$estfun <- wres * x[, !is.na(z$coefficients), drop = FALSE]/dispersion
}
## add model (if desired)
if(object) {
class(z) <- c("glm", "lm")
z$offset <- if(is.null(offset)) 0 else offset
z$contrasts <- attr(x, "contrasts")
z$xlevels <- attr(x, "xlevels")
cl <- as.call(expression(glm))
cl$formula <- attr(x, "formula")
if(!is.null(offset)) cl$offset <- attr(x, "offset")
z$call <- cl
z$terms <- attr(x, "terms")
## for case weights: change degrees of freedom
if(!is.null(weights) && caseweights) {
z$df.null <- z$df.null - sum(weights > 0) + sum(weights)
z$df.residual <- z$df.residual - sum(weights > 0) + sum(weights)
}
rval$object <- z
}
return(rval)
}
## methods
print.glmtree <- function(x,
title = NULL, objfun = NULL, ...)
{
if(is.null(title)) title <- sprintf("Generalized linear model tree (family: %s)", x$info$family)
if(is.null(objfun)) objfun <- if(substr(x$info$family, 1L, 5L) != "quasi") "negative log-likelihood" else "deviance"
print.modelparty(x, title = title, objfun = objfun, ...)
}
predict.glmtree <- function(object, newdata = NULL, type = "response", ...)
{
## FIXME: possible to get default?
if(is.null(newdata) & !identical(type, "node")) stop("newdata has to be provided")
predict.modelparty(object, newdata = newdata, type = type, ...)
}
plot.glmtree <- function(x, terminal_panel = node_bivplot,
tp_args = list(), tnex = NULL, drop_terminal = NULL, ...)
{
nreg <- if(is.null(tp_args$which)) x$info$nreg else length(tp_args$which)
if(nreg < 1L & missing(terminal_panel)) {
plot.constparty(as.constparty(x),
tp_args = tp_args, tnex = tnex, drop_terminal = drop_terminal, ...)
} else {
if(is.null(tnex)) tnex <- if(is.null(terminal_panel)) 1L else 2L * nreg
if(is.null(drop_terminal)) drop_terminal <- !is.null(terminal_panel)
plot.modelparty(x, terminal_panel = terminal_panel,
tp_args = tp_args, tnex = tnex, drop_terminal = drop_terminal, ...)
}
}
|