1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
pmmlTreeModel <- function(file, ...) {
stopifnot(requireNamespace("XML"))
as.party(XML::xmlRoot(XML::xmlTreeParse(file)))
}
as.party.XMLNode <- function(obj, ...) {
stopifnot(requireNamespace("XML"))
## check whether XML specifies a TreeModel
stopifnot(c("DataDictionary", "TreeModel") %in% names(obj))
if(any(warnx <- c("MiningBuildTask", "TransformationDictionary", "Extension") %in% names(obj)))
warning(sprintf("%s not yet implemented", paste(names(obj)[warnx], collapse = ", ")))
## process header information
if("Header" %in% names(obj)) {
hdr <- obj[["Header"]]
h_info <- c(Header = paste(as.character(XML::xmlAttrs(hdr)), collapse = ", "))
if(length(hdr) > 0L) {
h_info <- c(h_info,
XML::xmlSApply(hdr, function(x)
paste(c(as.character(XML::xmlAttrs(x)), XML::xmlValue(x)), collapse = ", ")
)
)
}
} else {
h_info <- NULL
}
## parse data dictionary
extract_empty_model_frame <- function(x) {
## extract DataDictionary
dd <- x[["DataDictionary"]]
## currently we can only look at DataField
if(!all(names(dd) == "DataField")) warning("data specifications other than DataField are not yet implemented")
## check columns
nc <- as.numeric(XML::xmlAttrs(dd)["numberOfFields"])
if(!is.na(nc)) stopifnot(nc == length(dd))
## set up data frame (only numeric variables)
mf <- as.data.frame(rep(list(1), nc))[0,]
names(mf) <- XML::xmlSApply(dd, function(x) XML::xmlAttrs(x)["name"])
## modify class if necessary
for(i in 1:nc) {
optype <- XML::xmlAttrs(dd[[i]])["optype"]
switch(optype,
"categorical" = {
mf[[i]] <- factor(integer(0),
levels = XML::xmlSApply(dd[[i]], function(x) gsub("&", "&", XML::xmlAttrs(x)["value"], fixed = TRUE)))
},
"ordinal" = {
mf[[i]] <- factor(integer(0), ordered = TRUE,
levels = XML::xmlSApply(dd[[i]], function(x) gsub("&", "&", XML::xmlAttrs(x)["value"], fixed = TRUE)))
},
"continuous" = {
dataType <- XML::xmlAttrs(dd[[i]])["dataType"]
if(dataType == "integer") mf[[i]] <- integer(0)
}
)
}
return(mf)
}
mf <- extract_empty_model_frame(obj)
mf_names <- names(mf)
mf_levels <- lapply(mf, levels)
## parse MiningSchema
extract_terms <- function(x) {
## extract MiningSchema
ms <- x[["TreeModel"]]
stopifnot("MiningSchema" %in% names(ms))
ms <- ms[["MiningSchema"]]
## currently we can only look at MiningField
if(!all(names(ms) == "MiningField")) warning("MiningField not yet implemented")
## extract variable info
vars <- t(XML::xmlSApply(ms, XML::xmlAttrs))
if(sum(vars[,2] == "predicted") > 1) stop("multivariate responses not yet implemented")
if(!all(vars[,2] %in% c("predicted", "active", "supplementary"))) warning("not yet implemented")
## set up formula
ff <- as.formula(paste(vars[vars[,2] == "predicted",1], "~",
paste(vars[vars[,2] != "predicted",1], collapse = " + ")))
return(terms(ff))
}
trms <- extract_terms(obj)
## parse TreeModel
tm <- obj[["TreeModel"]]
tm_info <- c(XML::xmlAttrs(tm), h_info)
## check response
stopifnot(tm_info["functionName"] %in% c("classification", "regression"))
mf_response <- mf[[deparse(attr(trms, "variables")[[2L]])]]
if(tm_info["functionName"] == "classification") stopifnot(inherits(mf_response, "factor"))
if(tm_info["functionName"] == "regression") stopifnot(is.numeric(mf_response))
## convenience functions for parsing nodes
is_terminal <- function(xnode) !("Node" %in% names(xnode))
is_root <- function(xnode) "True" %in% names(xnode)
n_kids <- function(xnode) sum("Node" == names(xnode))
n_obs <- function(xnode) as.numeric(XML::xmlAttrs(xnode)["recordCount"])
has_surrogates <- function(x) {
ns <- sum(c("SimplePredicate", "SimpleSetPredicate", "CompoundPredicate") %in% names(x))
if(ns != 1) stop("invalid PMML")
if("CompoundPredicate" %in% names(x)) {
if(identical(as.vector(XML::xmlAttrs(x[["CompoundPredicate"]])["booleanOperator"]), "surrogate")) return(TRUE)
else return(FALSE)
} else {
return(FALSE)
}
}
has_single_splits <- function(x) {
wi <- which(names(x) %in% c("SimplePredicate", "SimpleSetPredicate", "CompoundPredicate"))
sapply(wi, function(i) {
if(names(x)[i] %in% c("SimplePredicate", "SimpleSetPredicate")) return(TRUE)
if(identical(as.vector(XML::xmlAttrs(x[[i]])["booleanOperator"]), "or")) return(TRUE)
stop("CompoundPredicate not yet implemented")
})
}
n_splits <- function(xnode) {
wi <- which("Node" == names(xnode))
rval <- unique(sapply(wi, function(i) {
xnodei <- if(has_surrogates(xnode[[i]])) xnode[[i]][["CompoundPredicate"]] else xnode[[i]]
rval <- has_single_splits(xnodei)
if(!all(rval)) stop("invalid PMML")
sum(rval)
}))
if(length(rval) > 1) stop("invalid PMML")
return(rval)
}
kid_ids <- function(xnode) {
wi <- which("Node" == names(xnode))
rval <- sapply(wi, function(j) {
as.vector(XML::xmlAttrs(xnode[[j]])["id"])
})
}
get_pred <- function(xnode) {
pred <- as.vector(XML::xmlAttrs(xnode)["score"])
if(is.na(pred)) return(NULL)
if(is.numeric(mf_response)) as.numeric(pred)
else factor(pred, levels = levels(mf_response))
}
get_dist <- function(xnode) {
wi <- which("ScoreDistribution" == names(xnode))
if(length(wi) < 1) return(NULL)
rval <- sapply(wi, function(i) as.numeric(XML::xmlAttrs(xnode[[i]])["recordCount"]))
names(rval) <- sapply(wi, function(i) XML::xmlAttrs(xnode[[i]])["value"])
if(inherits(mf_response, "factor")) rval <- rval[levels(mf_response)]
return(rval)
}
get_error <- function(xnode) {
if(tm_info["functionName"] != "classification") return(NULL)
tab <- get_dist(xnode)
if(is.null(tab)) return(NULL)
c("%" = sum(100 * prop.table(tab)[names(tab) != get_pred(xnode)]))
}
get_extension <- function(xnode) {
if(!("Extension" %in% names(xnode))) return(NULL)
if(length(xnode[["Extension"]]) > 1) warning("currently only one Extension allowed")
rval <- XML::xmlApply(xnode[["Extension"]][[1]], XML::xmlAttrs)
names(rval) <- NULL
rval <- unlist(rval)
to_numeric <- function(x) {
y <- suppressWarnings(as.numeric(x))
if(!is.null(y) && !is.na(y)) y else x
}
sapply(rval, to_numeric)
}
node_info <- function(xnode) list(prediction = get_pred(xnode), n = n_obs(xnode),
error = get_error(xnode), distribution = get_dist(xnode), extension = get_extension(xnode))
get_split_prob <- function(xnode) {
rval <- rep(0, n_kids(xnode))
wi <- XML::xmlAttrs(xnode)["defaultChild"]
if(is.na(wi)) rval <- NULL
else rval[which(kid_ids(xnode) == wi)] <- 1
return(rval)
}
get_split <- function(xnode, i, surrogates) {
wi <- which("Node" == names(xnode))
rval <- sapply(wi, function(j) {
nj <- if(surrogates) xnode[[j]][["CompoundPredicate"]] else xnode[[j]]
if(any(c("SimplePredicate", "SimpleSetPredicate") %in% names(nj))) {
wii <- which(names(nj) %in% c("SimplePredicate", "SimpleSetPredicate"))[i]
c("predicateType" = as.vector(names(nj)[wii]), XML::xmlAttrs(nj[[wii]]))
} else {
wii <- which(names(nj) == "CompoundPredicate")[i]
nj <- nj[[wii]]
if(!identical(as.vector(XML::xmlAttrs(nj)["booleanOperator"]), "or")) stop("not yet implemented")
if(any(names(nj) %in% c("SimpleSetPredicate", "CompoundPredicate"))) stop("not yet implemented")
rvali <- sapply(which(names(nj) == "SimplePredicate"), function(j)
c("predicateType" = as.vector(names(nj)[j]), XML::xmlAttrs(nj[[j]])))
if(is.null(dim(rvali))) rvali <- matrix(rvali, ncol = 1)
stopifnot(length(unique(rvali["predicateType",])) == 1)
stopifnot(length(unique(rvali["field",])) == 1)
stopifnot(all(rvali["operator",] == "equal"))
c("predicateType" = "simpleSetPredicate",
"field" = rvali["field", 1],
"booleanOperator" = "isIn")
}
})
stopifnot(length(unique(rval["predicateType",])) == 1)
stopifnot(length(unique(rval["field",])) == 1)
if(rval["predicateType", 1] == "SimplePredicate") {
stopifnot(length(unique(rval["value",])) == 1)
if(ncol(rval) != 2) stop("not yet implemented")
if(!(identical(as.vector(sort(rval["operator",])), c("greaterThan", "lessOrEqual")) |
identical(as.vector(sort(rval["operator",])), c("greaterOrEqual", "lessThan")))
) stop("not yet implemented")
partysplit(
varid = which(rval["field", 1] == mf_names),
breaks = as.numeric(rval["value", 1]),
index = if(substr(rval["operator", 1], 1, 1) != "l") 2:1 else NULL,
right = "lessOrEqual" %in% rval["operator",],
prob = if(i == 1) get_split_prob(xnode) else NULL
)
} else {
varid <- which(rval["field", 1] == mf_names)
lev <- mf_levels[[varid]]
stopifnot(length(lev) > 1)
idx <- rep(NA, length(lev))
lab <- lapply(wi, function(j) {
nj <- if(surrogates) xnode[[j]][["CompoundPredicate"]] else xnode[[j]]
if(any(names(nj) %in% c("SimplePredicate", "SimpleSetPredicate"))) {
wii <- which(names(nj) %in% c("SimplePredicate", "SimpleSetPredicate"))[i]
ar <- nj[[wii]][["Array"]]
stopifnot(XML::xmlAttrs(ar)["type"] == "string")
rv <- XML::xmlValue(ar)
rv <- gsub(""", "\"", rv, fixed = TRUE)
rv <- if(substr(rv, 1, 1) == "\"" & substr(rv, nchar(rv), nchar(rv)) == "\"") {
strsplit(substr(rv, 2, nchar(rv) - 1), "\" \"")[[1]]
} else {
strsplit(rv, " ")[[1]]
}
stopifnot(length(rv) == as.numeric(XML::xmlAttrs(ar)["n"]))
return(rv)
} else {
wii <- which(names(nj) == "CompoundPredicate")[i]
as.vector(XML::xmlSApply(nj[[wii]], function(z) XML::xmlAttrs(z)["value"]))
}
})
for(j in 1:ncol(rval)) {
if(rval["booleanOperator",j] == "isIn") idx[which(lev %in% lab[[j]])] <- j
else idx[which(!(lev %in% lab[[j]]))] <- j
}
stopifnot(all(na.omit(idx) > 0))
if(min(idx, na.rm = TRUE) != 1) stop(sprintf("variable levels (%s) and split labels (%s)",
paste(lev, collapse = ", "), paste(sapply(lab, paste, collapse = ", "), collapse = " | ")))
partysplit(
varid = varid,
breaks = NULL,
index = as.integer(idx),
prob = if(i == 1) get_split_prob(xnode) else NULL
)
}
}
## function for setting up nodes
## (using global index ii)
pmml_node <- function(xnode) {
ii <<- ii + 1
if(is_terminal(xnode)) return(partynode(as.integer(ii),
info = node_info(xnode)
))
wi <- which("Node" == names(xnode))
ns <- n_splits(xnode)
nd <- partynode(as.integer(ii),
split = get_split(xnode, 1, has_surrogates(xnode[[wi[1]]])),
kids = lapply(wi, function(j) pmml_node(xnode[[j]])),
surrogates = if(ns < 2) NULL else lapply(2:ns, function(j) get_split(xnode, j, TRUE)),
info = node_info(xnode)
)
nd
}
## set up node
ii <- 0
if(is_root(tm[["Node"]])) nd <- pmml_node(tm[["Node"]]) else stop("root node not declared, invalid PMML?")
## set up party
## FIXME: extend info slot?
pt <- party(node = nd, data = mf, fitted = NULL, terms = trms, names = NULL, info = tm_info)
class(pt) <- c("simpleparty", class(pt))
return(pt)
}
|