1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
#include "qnn.h"
double pull (double const * const pA, const int n, int k)
{
ASSERT_TEMPRANGE (0, 0) ;
double * pB = tempRef (0, pB, n) ;
Copy (pB, pA, n) ;
double ax, buffer ;
int l = 0, lr = n - 1, jnc, j ;
while (l < lr) // 20 // 2do: put into pull fct
{
ax = pB[k] ;
jnc = l ;
j = lr ;
while (jnc <= j) // 30
{
while (pB[jnc] < ax) // 40
++jnc ;
while (pB[j] > ax) // 50
--j ;
if(jnc <= j) // 60
{
sm_swap (pB [jnc], pB[j], buffer) ;
++jnc ;
--j ;
}
} // 70
if (j < k)
l = jnc ;
if (k < jnc)
lr = j ;
}
return pB [k] ;
}
double whimed (double * const pA, int * const pIw, int n)
{
ASSERT_TEMPRANGE (1, 2) ;
int i ; //= (n + 1) >> 1 ;
double * pAcand = tempRef (2, pAcand, n) ;
int * pIWcand = tempRef (1, pIWcand, n) ;
int64_t nWtotal ;
sum (pIw, n, nWtotal) ;
if (!nWtotal)
return meal_NaN () ;
int64_t nTemp, nWrest = 0,nWleft= 0, nWmid = 0,nWright = 0 ;
int nKcand, nn = n ;
while (1)
{
double dTrial = pull(pA, nn, (nn >> 1)) ;
nWleft = nWright = nWmid = 0 ;
for (i = 0; i < nn; ++i)
{
if (pA[i] < dTrial)
nWleft += pIw [i] ;
else if (pA [i] > dTrial)
nWright += pIw [i] ;
else
nWmid += pIw [i] ;
}
nTemp = nWrest + nWleft ;
if ((nTemp << 1)> nWtotal)
{
nKcand = 0 ;
for (i = 0; i < nn; ++i)
{
if (pA [i] < dTrial)
{
pAcand [nKcand] = pA [i] ;
pIWcand [nKcand] = pIw [i] ;
++nKcand ;
}
}
nn = nKcand ;
}
else if (((nTemp + nWmid) << 1) > nWtotal)
return dTrial ;
else
{
nKcand = 0 ;
for (i = 0; i < nn; ++i)
{
if(pA [i] > dTrial)
{
pAcand [nKcand] = pA [i] ;
pIWcand [nKcand] = pIw [i] ;
++nKcand ;
}
}
nn = nKcand ;
nWrest += nWleft + nWmid ;
}
Copy (pA, pAcand, nn) ;
Copy (pIw, pIWcand, nn) ;
}
}
#ifdef _MSC_VER
#define NO_INLINE // MS compilers don't make problems here when using the helper functions..
#else
#define NO_INLINE __attribute__ ((noinline)) // other compilers (e.g. MinGW) are not supposed to inline these functions...
#endif
// workaround of some compiler optimization - issue:
// when computing a-b < x, whereas a-b == x the resulting value was
// sometimes "true" on windows machines (using MS VS6.0 and Mingw, various versions)
// in some very rare occasions this caused the qn algo to end in an infinite loop.
BOOL NO_INLINE isgr_s (const double &a, const double &b) //
{ // the same code worked without problems on linux.
return a > b ; // an assumption is, that some compilers "optimize" the expression
} //
// "a-b < x"
BOOL NO_INLINE isle_s (const double &a, const double &b) // to
{ // "a - b - x < 0" or "a - x - b < 0" (or sth similar)
return a < b ; //
} // which then gives numerical problems.
//
// QUICKFIX:
// Thus by using functions "isgr_s" and "isle_s" which are not allowed to be
// inlined, this optimization is avoided and the algorithm runs smoothly. \o/
//
// SOLUTION:
// Directly turning off the corresponding optimization for these lines.
// ("#pragma optimize ("", off")" didn't help so far)
double qn_raw (double *pY, const int n)
{
TEMP_GUARD ;
ASSERT_TEMPRANGE (3, 8) ;
const int ns1 = n - 1 ;
double * const pWork = tempArray<double> (8, n) ;
int * const pLeft = tempArray<int> (7, n), * const pRight = tempArray<int> (6, n), * const pWeight = tempArray<int> (5, n), * const pQ = tempArray<int> (4, n), * const pP = tempArray<int> (3, n) ;
tempArray<double> (0, n) ;
tempArray<double> (1, n) ;
tempArray<double> (2, n) ;
int i ;
double dTrial ;
const int64_t h = n/2+1 ;
int64_t
k = h * (h-1) >> 1 ,
jhelp = (n*((int64_t)n+1)) >> 1,
knew = k + jhelp,
nL = jhelp,
nR = ((int64_t) n) * n,
dwSumQ, dwSumP, j ;
meal_sort (pY, n) ;
for (i = n - 1; i != -1; --i)
{
pLeft[i] = n - i ;
pRight [i] = n ;
}
while (nR - nL > n) //F 200 continue
{
j = 0 ;
for (i = 1; i < n; ++i)
{
if (pLeft[i] < pRight [i])
{
pWeight [j] = pRight[i] - pLeft[i] ; //F weight(j)=right(i)-left(i)+1
jhelp = pLeft[i] + (pWeight[j] >> 1) ; //F jhelp=left(i)+weight(j)/2
pWork[j] = pY[i] - pY[n - jhelp - 1] ; //F work(j)=y(i)-y(n+1-jhelp)
++j ;
}
}
dTrial = whimed (pWork, pWeight, int (j)) ; //F trial=whimed(work,weight,j-1)
dwSumP = dwSumQ = j = 0 ; //F j = n + 1
for (i = n - 1; i != -1; --i)
{
while (j < n && isle_s ((pY[i] - pY[ns1 - j]), dTrial)) //F if ((j.lt.n).and.((y(i)-y(n-j)).lt.trial)) then
++j ;
// while (j < n && (pY[i] - pY[ns1 - j]) < dTrial) //F if ((j.lt.n).and.((y(i)-y(n-j)).lt.trial)) then
// ++j ;
pP[i] = int (j) ;
dwSumP += int (j) ; //F sumP+P(i)
}
j = n ;
for (i = 0; i < n; i++)
{
while (isgr_s(pY[i] - pY[n - j], dTrial)) //F if ((y(i)-y(n-j+2)).gt.trial) then
--j ;
// while (pY[i] - pY[n - j] > dTrial) //F if ((y(i)-y(n-j+2)).gt.trial) then
// --j ;
pQ[i] = int (j) ;
dwSumQ += int (j) ;
}
if (knew <= dwSumP)
{
Copy (pRight, pP, n) ;
nR = dwSumP ;
}
else if (knew > dwSumQ)
{
Copy (pLeft, pQ, n) ;
nL = dwSumQ ;
}
else
return dTrial ;
}
int jj ;
j = 0 ; //j=1
for (i = 1; i < n; ++i) //F do 90 i=2,n
{
if (pLeft[i] < pRight[i]) //F if (left(i).le.right(i)) then
{
for (jj = pLeft[i]; jj < pRight[i]; ++jj) //F do 100 jj=left(i),right(i)
{
pWork[j] = pY[i] - pY[ns1-jj] ; //F work(j)=y(i)-y(n-jj+1)
++j ;
}
} //F 100
} //F 90
return pull (pWork, int (j), int (knew-nL - 1)) ; //F Qn=pull(work,j-1,knew-nL)
}
double qn_corrN (const int n, const double dQnCNorm)
{
if (n <= 9)
{
static const double adCorrFact [] = {0.400, 0.993, 0.514, 0.845, 0.612, 0.859, 0.670, 0.874} ;
return dQnCNorm * adCorrFact[n - 2] ;
}
if (n & 1)
return dQnCNorm * n / (n + 1.4) ; // odd
return dQnCNorm * n / (n + 3.8) ; // even
}
void qn_nc (double &dQn, const double *pX, const int n)
{
TEMP_GUARD ;
ASSERT_TEMPRANGE (9, 9) ;
double * const pY = tempArray<double> (9, n) ;
Copy (pY, pX, n) ;
dQn = qn_raw (pY, n) ;
}
void qn_V (double &dQn, double *pX, const int n)
{
dQn = qn_raw (pX, n) ;
dQn *= qn_corrN (n) ;
}
void qn (double &dQn, const double *pX, const int n)
{
qn_nc (dQn, pX, n) ;
dQn *= qn_corrN (n) ;
}
/*
double qn (const double *pX, t_size n)
{
double dQn ;
qn (dQn, pX, n) ;
return dQn ;
}
EXPORT void ex_pull (int *pnParIn, double *pnParOut, double const * const pA)
{
pnParOut[0] = pull (pA, pnParIn[0], pnParIn[1]) ;
}
EXPORT void ex_whimed (int *pnParIn, double *pnParOut, double * const pA, int * const pIw)
{
pnParOut[0] = whimed (pA, pIw, pnParIn[0]) ;
}
*/
/*
void qn (const double *x, int *npLength, double *pdQn) // used by sPCApp: 2do: change scale function definition ...
{
qn (*pdQn, x, *npLength) ;
}
*/
double qn (const SVDataD &a)
{
double dRet ;
qn (dRet, a.GetData (), a.size ()) ;
return dRet ;
}
double qn (const SCDataD &a)
{
double dRet;
qn (dRet, a.GetData (), a.size ()) ;
return dRet ;
}
|