File: README.md

package info (click to toggle)
r-cran-performance 0.15.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,848 kB
  • sloc: sh: 13; makefile: 2
file content (519 lines) | stat: -rw-r--r-- 18,290 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

# performance <img src='man/figures/logo.png' align="right" height="139" />

[![DOI](https://joss.theoj.org/papers/10.21105/joss.03139/status.svg)](https://doi.org/10.21105/joss.03139)
[![downloads](https://cranlogs.r-pkg.org/badges/performance)](https://cran.r-project.org/package=performance)
[![total](https://cranlogs.r-pkg.org/badges/grand-total/performance)](https://cranlogs.r-pkg.org/)

***Test if your model is a good model!***

A crucial aspect when building regression models is to evaluate the
quality of modelfit. It is important to investigate how well models fit
to the data and which fit indices to report. Functions to create
diagnostic plots or to compute fit measures do exist, however, mostly
spread over different packages. There is no unique and consistent
approach to assess the model quality for different kind of models.

The primary goal of the **performance** package is to fill this gap and
to provide utilities for computing **indices of model quality** and
**goodness of fit**. These include measures like r-squared (R2), root
mean squared error (RMSE) or intraclass correlation coefficient (ICC) ,
but also functions to check (mixed) models for overdispersion,
zero-inflation, convergence or singularity.

## Installation

[![CRAN](https://www.r-pkg.org/badges/version/performance)](https://cran.r-project.org/package=performance)
[![performance status
badge](https://easystats.r-universe.dev/badges/performance)](https://easystats.r-universe.dev)
[![codecov](https://codecov.io/gh/easystats/performance/branch/main/graph/badge.svg)](https://app.codecov.io/gh/easystats/performance)

The *performance* package is available on CRAN, while its latest
development version is available on R-universe (from *rOpenSci*).

| Type | Source | Command |
|----|----|----|
| Release | CRAN | `install.packages("performance")` |
| Development | R-universe | `install.packages("performance", repos = "https://easystats.r-universe.dev")` |

Once you have downloaded the package, you can then load it using:

``` r
library("performance")
```

> **Tip**
>
> Instead of `library(performance)`, use `library(easystats)`. This will
> make all features of the easystats-ecosystem available.
>
> To stay updated, use `easystats::install_latest()`.

## Citation

To cite performance in publications use:

``` r
citation("performance")
#> To cite package 'performance' in publications use:
#> 
#>   Lüdecke et al., (2021). performance: An R Package for Assessment, Comparison and
#>   Testing of Statistical Models. Journal of Open Source Software, 6(60), 3139.
#>   https://doi.org/10.21105/joss.03139
#> 
#> A BibTeX entry for LaTeX users is
#> 
#>   @Article{,
#>     title = {{performance}: An {R} Package for Assessment, Comparison and Testing of Statistical Models},
#>     author = {Daniel Lüdecke and Mattan S. Ben-Shachar and Indrajeet Patil and Philip Waggoner and Dominique Makowski},
#>     year = {2021},
#>     journal = {Journal of Open Source Software},
#>     volume = {6},
#>     number = {60},
#>     pages = {3139},
#>     doi = {10.21105/joss.03139},
#>   }
```

## Documentation

[![Documentation](https://img.shields.io/badge/documentation-performance-orange.svg?colorB=E91E63)](https://easystats.github.io/performance/)
[![Blog](https://img.shields.io/badge/blog-easystats-orange.svg?colorB=FF9800)](https://easystats.github.io/blog/posts/)
[![Features](https://img.shields.io/badge/features-performance-orange.svg?colorB=2196F3)](https://easystats.github.io/performance/reference/index.html)

There is a nice introduction into the package on
[youtube](https://www.youtube.com/watch?v=EPIxQ5i5oxs).

## The *performance* workflow

<img src="man/figures/figure_workflow.png" width="75%" />

### Assessing model quality

#### R-squared

**performance** has a generic `r2()` function, which computes the
r-squared for many different models, including mixed effects and
Bayesian regression models.

`r2()` returns a list containing values related to the “most
appropriate” r-squared for the given model.

``` r
model <- lm(mpg ~ wt + cyl, data = mtcars)
r2(model)
#> # R2 for Linear Regression
#>        R2: 0.830
#>   adj. R2: 0.819

model <- glm(am ~ wt + cyl, data = mtcars, family = binomial)
r2(model)
#> # R2 for Logistic Regression
#>   Tjur's R2: 0.705

library(MASS)
data(housing)
model <- polr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
r2(model)
#>   Nagelkerke's R2: 0.108
```

The different R-squared measures can also be accessed directly via
functions like `r2_bayes()`, `r2_coxsnell()` or `r2_nagelkerke()` (see a
full list of functions
[here](https://easystats.github.io/performance/reference/index.html#section-r-functions)).

For mixed models, the *conditional* and *marginal* R-squared are
returned. The *marginal R-squared* considers only the variance of the
fixed effects and indicates how much of the model’s variance is
explained by the fixed effects part only. The *conditional R-squared*
takes both the fixed and random effects into account and indicates how
much of the model’s variance is explained by the “complete” model.

For frequentist mixed models, `r2()` (resp. `r2_nakagawa()`) computes
the *mean* random effect variances, thus `r2()` is also appropriate for
mixed models with more complex random effects structures, like random
slopes or nested random effects (Johnson 2014; Nakagawa, Johnson, and
Schielzeth 2017).

``` r
set.seed(123)
library(rstanarm)

model <- stan_glmer(
  Petal.Length ~ Petal.Width + (1 | Species),
  data = iris,
  cores = 4
)

r2(model)
#> # Bayesian R2 with Compatibility Interval
#> 
#>   Conditional R2: 0.954 (95% CI [0.951, 0.957])
#>      Marginal R2: 0.414 (95% CI [0.204, 0.644])

library(lme4)
model <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
r2(model)
#> # R2 for Mixed Models
#> 
#>   Conditional R2: 0.799
#>      Marginal R2: 0.279
```

#### Intraclass Correlation Coefficient (ICC)

Similar to R-squared, the ICC provides information on the explained
variance and can be interpreted as “the proportion of the variance
explained by the grouping structure in the population” (Hox 2010).

`icc()` calculates the ICC for various mixed model objects, including
`stanreg` models.

``` r
library(lme4)
model <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
icc(model)
#> # Intraclass Correlation Coefficient
#> 
#>     Adjusted ICC: 0.722
#>   Unadjusted ICC: 0.521
```

…and models of class `brmsfit`.

``` r
library(brms)
set.seed(123)
model <- brm(mpg ~ wt + (1 | cyl) + (1 + wt | gear), data = mtcars)
```

``` r
icc(model)
#> # Intraclass Correlation Coefficient
#> 
#>     Adjusted ICC: 0.930
#>   Unadjusted ICC: 0.771
```

### Model diagnostics

#### Check for overdispersion

Overdispersion occurs when the observed variance in the data is higher
than the expected variance from the model assumption (for Poisson,
variance roughly equals the mean of an outcome).
`check_overdispersion()` checks if a count model (including mixed
models) is overdispersed or not.

``` r
library(glmmTMB)
data(Salamanders)
model <- glm(count ~ spp + mined, family = poisson, data = Salamanders)
check_overdispersion(model)
#> # Overdispersion test
#> 
#>        dispersion ratio =    2.946
#>   Pearson's Chi-Squared = 1873.710
#>                 p-value =  < 0.001
```

Overdispersion can be fixed by either modelling the dispersion parameter
(not possible with all packages), or by choosing a different
distributional family (like Quasi-Poisson, or negative binomial, see
(Gelman and Hill 2007)).

#### Check for zero-inflation

Zero-inflation (in (Quasi-)Poisson models) is indicated when the amount
of observed zeros is larger than the amount of predicted zeros, so the
model is *underfitting* zeros. In such cases, it is recommended to use
negative binomial or zero-inflated models.

Use `check_zeroinflation()` to check if zero-inflation is present in the
fitted model.

``` r
model <- glm(count ~ spp + mined, family = poisson, data = Salamanders)
check_zeroinflation(model)
#> # Check for zero-inflation
#> 
#>    Observed zeros: 387
#>   Predicted zeros: 298
#>             Ratio: 0.77
```

#### Check for singular model fits

A “singular” model fit means that some dimensions of the
variance-covariance matrix have been estimated as exactly zero. This
often occurs for mixed models with overly complex random effects
structures.

`check_singularity()` checks mixed models (of class `lme`, `merMod`,
`glmmTMB` or `MixMod`) for singularity, and returns `TRUE` if the model
fit is singular.

``` r
library(lme4)
data(sleepstudy)

# prepare data
set.seed(123)
sleepstudy$mygrp <- sample(1:5, size = 180, replace = TRUE)
sleepstudy$mysubgrp <- NA
for (i in 1:5) {
  filter_group <- sleepstudy$mygrp == i
  sleepstudy$mysubgrp[filter_group] <-
    sample(1:30, size = sum(filter_group), replace = TRUE)
}

# fit strange model
model <- lmer(
  Reaction ~ Days + (1 | mygrp / mysubgrp) + (1 | Subject),
  data = sleepstudy
)

check_singularity(model)
#> [1] TRUE
```

Remedies to cure issues with singular fits can be found
[here](https://easystats.github.io/performance/reference/check_singularity.html).

#### Check for heteroskedasticity

Linear models assume constant error variance (homoskedasticity).

The `check_heteroscedasticity()` functions assess if this assumption has
been violated:

``` r
data(cars)
model <- lm(dist ~ speed, data = cars)

check_heteroscedasticity(model)
#> Warning: Heteroscedasticity (non-constant error variance) detected (p = 0.031).
```

#### Comprehensive visualization of model checks

**performance** provides many functions to check model assumptions, like
`check_collinearity()`, `check_normality()` or
`check_heteroscedasticity()`. To get a comprehensive check, use
`check_model()`.

``` r
# defining a model
model <- lm(mpg ~ wt + am + gear + vs * cyl, data = mtcars)

# checking model assumptions
check_model(model)
```

<img src="man/figures/unnamed-chunk-14-1.png" width="80%" />

### Model performance summaries

`model_performance()` computes indices of model performance for
regression models. Depending on the model object, typical indices might
be r-squared, AIC, BIC, RMSE, ICC or LOOIC.

#### Linear model

``` r
m1 <- lm(mpg ~ wt + cyl, data = mtcars)
model_performance(m1)
#> # Indices of model performance
#> 
#> AIC     |    AICc |     BIC |    R2 | R2 (adj.) |  RMSE | Sigma
#> ---------------------------------------------------------------
#> 156.010 | 157.492 | 161.873 | 0.830 |     0.819 | 2.444 | 2.568
```

#### Logistic regression

``` r
m2 <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
model_performance(m2)
#> # Indices of model performance
#> 
#> AIC    |   AICc |    BIC | Tjur's R2 |  RMSE | Sigma | Log_loss | Score_log | Score_spherical |   PCP
#> -----------------------------------------------------------------------------------------------------
#> 31.298 | 32.155 | 35.695 |     0.478 | 0.359 | 1.000 |    0.395 |   -14.903 |           0.095 | 0.743
```

#### Linear mixed model

``` r
library(lme4)
m3 <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
model_performance(m3)
#> # Indices of model performance
#> 
#> AIC      |     AICc |      BIC | R2 (cond.) | R2 (marg.) |   ICC |   RMSE |  Sigma
#> ----------------------------------------------------------------------------------
#> 1755.628 | 1756.114 | 1774.786 |      0.799 |      0.279 | 0.722 | 23.438 | 25.592
```

### Models comparison

The `compare_performance()` function can be used to compare the
performance and quality of several models (including models of different
types).

``` r
counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12)
outcome <- gl(3, 1, 9)
treatment <- gl(3, 3)
m4 <- glm(counts ~ outcome + treatment, family = poisson())

compare_performance(m1, m2, m3, m4, verbose = FALSE)
#> # Comparison of Model Performance Indices
#> 
#> Name |   Model |  AIC (weights) | AICc (weights) |  BIC (weights) |   RMSE |  Sigma | Score_log
#> -----------------------------------------------------------------------------------------------
#> m1   |      lm |  156.0 (<.001) |  157.5 (<.001) |  161.9 (<.001) |  2.444 |  2.568 |          
#> m2   |     glm |   31.3 (>.999) |   32.2 (>.999) |   35.7 (>.999) |  0.359 |  1.000 |   -14.903
#> m3   | lmerMod | 1764.0 (<.001) | 1764.5 (<.001) | 1783.1 (<.001) | 23.438 | 25.592 |          
#> m4   |     glm |   56.8 (<.001) |   76.8 (<.001) |   57.7 (<.001) |  3.043 |  1.000 |    -2.598
#> 
#> Name | Score_spherical |    R2 | R2 (adj.) | Tjur's R2 | Log_loss |   PCP | R2 (cond.) | R2 (marg.)
#> ---------------------------------------------------------------------------------------------------
#> m1   |                 | 0.830 |     0.819 |           |          |       |            |           
#> m2   |           0.095 |       |           |     0.478 |    0.395 | 0.743 |            |           
#> m3   |                 |       |           |           |          |       |      0.799 |      0.279
#> m4   |           0.324 |       |           |           |          |       |            |           
#> 
#> Name |   ICC | Nagelkerke's R2
#> ------------------------------
#> m1   |       |                
#> m2   |       |                
#> m3   | 0.722 |                
#> m4   |       |           0.657
```

#### General index of model performance

One can also easily compute and a [**composite
index**](https://easystats.github.io/performance/reference/compare_performance.html#details)
of model performance and sort the models from the best one to the worse.

``` r
compare_performance(m1, m2, m3, m4, rank = TRUE, verbose = FALSE)
#> # Comparison of Model Performance Indices
#> 
#> Name |   Model |   RMSE |  Sigma | AIC weights | AICc weights | BIC weights | Performance-Score
#> -----------------------------------------------------------------------------------------------
#> m2   |     glm |  0.359 |  1.000 |       1.000 |        1.000 |       1.000 |           100.00%
#> m4   |     glm |  3.043 |  1.000 |    2.96e-06 |     2.06e-10 |    1.63e-05 |            37.67%
#> m1   |      lm |  2.444 |  2.568 |    8.30e-28 |     6.07e-28 |    3.99e-28 |            36.92%
#> m3   | lmerMod | 23.438 | 25.592 |    0.00e+00 |     0.00e+00 |    0.00e+00 |             0.00%
```

#### Visualisation of indices of models’ performance

Finally, we provide convenient visualisation (the `see` package must be
installed).

``` r
plot(compare_performance(m1, m2, m4, rank = TRUE, verbose = FALSE))
```

<img src="man/figures/unnamed-chunk-20-1.png" width="100%" />

### Testing models

`test_performance()` (and `test_bf`, its Bayesian sister) carries out
the most relevant and appropriate tests based on the input (for
instance, whether the models are nested or not).

``` r
set.seed(123)
data(iris)

lm1 <- lm(Sepal.Length ~ Species, data = iris)
lm2 <- lm(Sepal.Length ~ Species + Petal.Length, data = iris)
lm3 <- lm(Sepal.Length ~ Species * Sepal.Width, data = iris)
lm4 <- lm(Sepal.Length ~ Species * Sepal.Width + Petal.Length + Petal.Width, data = iris)

test_performance(lm1, lm2, lm3, lm4)
#> Name | Model |     BF | Omega2 | p (Omega2) |    LR | p (LR)
#> ------------------------------------------------------------
#> lm1  |    lm |        |        |            |       |       
#> lm2  |    lm | > 1000 |   0.69 |     < .001 | -6.25 | < .001
#> lm3  |    lm | > 1000 |   0.36 |     < .001 | -3.44 | < .001
#> lm4  |    lm | > 1000 |   0.73 |     < .001 | -7.77 | < .001
#> Each model is compared to lm1.

test_bf(lm1, lm2, lm3, lm4)
#> Bayes Factors for Model Comparison
#> 
#>       Model                                                    BF
#> [lm2] Species + Petal.Length                             3.45e+26
#> [lm3] Species * Sepal.Width                              4.69e+07
#> [lm4] Species * Sepal.Width + Petal.Length + Petal.Width 7.58e+29
#> 
#> * Against Denominator: [lm1] Species
#> *   Bayes Factor Type: BIC approximation
```

### Plotting Functions

Plotting functions are available through the [**see**
package](https://easystats.github.io/see/articles/performance.html).

# Code of Conduct

Please note that the performance project is released with a [Contributor
Code of
Conduct](https://easystats.github.io/performance/CODE_OF_CONDUCT.html).
By contributing to this project, you agree to abide by its terms.

# Contributing

We are happy to receive bug reports, suggestions, questions, and (most
of all) contributions to fix problems and add features.

Please follow contributing guidelines mentioned here:

<https://easystats.github.io/performance/CONTRIBUTING.html>

## References

<div id="refs" class="references csl-bib-body hanging-indent"
entry-spacing="0">

<div id="ref-gelman_data_2007" class="csl-entry">

Gelman, Andrew, and Jennifer Hill. 2007. *Data Analysis Using Regression
and Multilevel/Hierarchical Models*. Analytical Methods for Social
Research. Cambridge ; New York: Cambridge University Press.

</div>

<div id="ref-hox_multilevel_2010" class="csl-entry">

Hox, J. J. 2010. *Multilevel Analysis: Techniques and Applications*. 2nd
ed. Quantitative Methodology Series. New York: Routledge.

</div>

<div id="ref-johnson_extension_2014" class="csl-entry">

Johnson, Paul C. D. 2014. “Extension of Nakagawa & Schielzeth’s R2 GLMM
to Random Slopes Models.” Edited by Robert B. O’Hara. *Methods in
Ecology and Evolution* 5 (9): 944–46.

</div>

<div id="ref-nakagawa_coefficient_2017" class="csl-entry">

Nakagawa, Shinichi, Paul C. D. Johnson, and Holger Schielzeth. 2017.
“The Coefficient of Determination R2 and Intra-Class Correlation
Coefficient from Generalized Linear Mixed-Effects Models Revisited and
Expanded.” *Journal of The Royal Society Interface* 14 (134): 20170213.

</div>

</div>