1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
|
## function performs ancestral character estimation under the threshold model
## written by Liam J. Revell 2012, 2013, 2014, 2017
ancThresh<-function(tree,x,ngen=10000,sequence=NULL,method="mcmc",model=c("BM","OU","lambda"),control=list(),...){
if(!inherits(tree,"phylo")) stop("tree should be an object of class \"phylo\".")
# check method
if(method!="mcmc") stop(paste(c("do not recognize method =",method,",quitting")))
# get model for the evolution of liability
model<-model[1]
# check x
if(is.data.frame(x)) x<-as.matrix(x)
if(is.matrix(x)){
X<-x[tree$tip.label,]
if(is.null(sequence)){
message("**** NOTE: no sequence provided, column order in x")
seq<-colnames(X)
} else seq<-sequence
} else if(is.vector(x)){
x<-x[tree$tip.label]
if(is.null(sequence)){
message("**** NOTE: no sequence provided, using alphabetical or numerical order")
seq<-sort(levels(as.factor(x)))
} else seq<-sequence
X<-to.matrix(x,seq)
}
# row scale X
X<-X/apply(X,1,sum)
X<-X[,seq] # order columns by seq
# ok, now set starting thresholds
th<-c(1:length(seq))-1; names(th)<-seq
x<-to.vector(X)
l<-sapply(x,function(x) runif(n=1,min=th[x]-1,max=th[x])) # set plausible starting liability
if(model=="OU") alpha<-0.1*max(nodeHeights(tree))
if(model=="lambda") lambda<-1.0
# for MCMC
n<-length(tree$tip)
m<-length(th)
npar<-if(model=="BM") tree$Nnode+n+m-2 else tree$Nnode+n+m-1
# populate control list
PrA<-matrix(1/m,tree$Nnode,m,dimnames=list(1:tree$Nnode+n,seq))
if(!is.null(control$pr.anc)){
if(!is.matrix(control$pr.anc)){
message("**** NOTE: prior on ancestral states must be in matrix form; using default prior")
control$pr.anc<-NULL
} else {
control$pr.anc<-control$pr.anc[,seq,drop=FALSE]
PrA[rownames(control$pr.anc),]<-control$pr.anc
control$pr.anc<-PrA
}
}
con=list(sample=1000,
propliab=0.5*max(nodeHeights(tree)),
propthresh=0.05*max(nodeHeights(tree)),
propalpha=0.1*max(nodeHeights(tree)),
proplambda=0.01,
pr.anc=PrA,
pr.th=0.01,
burnin=round(0.2*ngen),
plot=FALSE,
print=TRUE,
piecol=setNames(palette()[1:length(seq)],seq),
tipcol="input",
quiet=FALSE)
con[(namc<-names(control))]<-control
con<-con[!sapply(con,is.null)]
# now set ancestral liabilities, by first picking ancestral states from their prior
temp<-apply(con$pr.anc,1,rstate)
# assign random liabilities consistent with the starting thresholds
a<-sapply(temp,function(x) runif(n=1,min=th[x]-1,max=th[x]))
# now change the upper limit of th to Inf
th[length(th)]<-Inf
# compute some matrices & values
V<-if(model=="BM") vcvPhylo(tree)
else if(model=="OU") vcvPhylo(tree,model="OU",alpha=alpha)
else if(model=="lambda") vcvPhylo(tree,model="lambda",lambda=lambda)
# check to make sure that V will be non-singular
if(any(tree$edge.length<=(10*.Machine$double.eps)))
stop("some branch lengths are 0 or nearly zero")
invV<-solve(V)
detV<-determinant(V,logarithm=TRUE)$modulus[1]
lik1<-likLiab(l,a,V,invV,detV)+log(probMatch(X,l,th,seq))
# store
A<-matrix(NA,ngen/con$sample+1,tree$Nnode,dimnames=list(NULL,n+1:tree$Nnode))
B<-if(model=="BM") matrix(NA,ngen/con$sample+1,m+2,dimnames=list(NULL,c("gen",names(th),"logLik")))
else if(model=="OU") matrix(NA,ngen/con$sample+1,m+3,dimnames=list(NULL,c("gen",names(th),"alpha","logLik")))
else if(model=="lambda") matrix(NA,ngen/con$sample+1,m+3,dimnames=list(NULL,c("gen",names(th),"lambda","logLik")))
C<-matrix(NA,ngen/con$sample+1,tree$Nnode+n,dimnames=list(NULL,c(tree$tip.label,1:tree$Nnode+n)))
A[1,]<-threshState(a,thresholds=th)
B[1,]<-if(model=="BM") c(0,th,lik1) else if(model=="OU") c(0,th,alpha,lik1) else if(model=="lambda") c(0,th,lambda,lik1)
C[1,]<-c(l[tree$tip.label],a[as.character(1:tree$Nnode+n)])
# run MCMC
message("MCMC starting....")
logL<-lik1<-likLiab(l,a,V,invV,detV)+log(probMatch(X,l,th,seq))
for(i in 1:ngen){
lik1<-logL
d<-i%%npar
if(ngen>=1000) if(i%%1000==0) if(con$print) message(paste("gen",i))
ap<-a; lp<-l; thp<-th
if(model=="OU") alphap<-alpha
if(model=="lambda") lambdap<-lambda
Vp<-V; invVp<-invV; detVp<-detV
if(d<=tree$Nnode&&d!=0){
# update node liabilities
ind<-d%%tree$Nnode; if(ind==0) ind<-tree$Nnode
ap[ind]<-a[ind]+rnorm(n=1,sd=sqrt(con$propliab))
} else {
if((d>tree$Nnode&&d<=(tree$Nnode+n))||(npar==(tree$Nnode+n)&&d==0)){
# update tip liabilities
if(d==0) ind<-n
else { ind<-(d-tree$Nnode)%%n; if(ind==0) ind<-n }
lp[ind]<-l[ind]+rnorm(n=1,sd=sqrt(con$propliab))
} else if(d>(tree$Nnode+n)&&d<=(tree$Nnode+n+m-2)||(npar==(tree$Nnode+n+m-2)&&d==0)) {
# update thresholds
if(d) ind<-(d-tree$Nnode-n)%%m+1
else ind<-m-1
thp[ind]<-bounce(th[ind],rnorm(n=1,sd=sqrt(con$propthresh)),c(th[ind-1],th[ind+1]))
} else {
if(model=="OU"){
alphap<-bounce(alpha,rnorm(n=1,sd=sqrt(con$propalpha)),c(0,Inf))
Vp<-vcvPhylo(tree,model="OU",alpha=alphap)
} else if(model=="lambda"){
lambdap<-bounce(lambda,rnorm(n=1,sd=sqrt(con$proplambda)),c(0,1))
Vp<-vcvPhylo(tree,model="lambda",lambda=lambdap)
}
invVp<-solve(Vp)
detVp<-determinant(Vp,logarithm=TRUE)$modulus[1]
}
}
lik2<-likLiab(lp,ap,Vp,invVp,detVp)+log(probMatch(X,lp,thp,seq))
p.odds<-min(c(1,exp(lik2+logPrior(threshState(ap,thresholds=thp),thp,con)-lik1-logPrior(threshState(a,thresholds=th),th,con))))
if(p.odds>runif(n=1)){
a<-ap; l<-lp; th<-thp
V<-Vp; detV<-detVp; invV<-invVp
if(model=="OU") alpha<-alphap
if(model=="lambda") lambda<-lambdap
logL<-lik2
} else logL<-lik1
if(i%%con$sample==0){
A[i/con$sample+1,]<-threshState(a,thresholds=th)
B[i/con$sample+1,]<-if(model=="BM") c(i,th[colnames(B)[1+1:m]],logL) else if(model=="OU") c(i,th[colnames(B)[1+1:m]],alpha,logL) else if(model=="lambda") c(i,th[colnames(B)[1+1:m]],lambda,logL)
C[i/con$sample+1,]<-c(l[tree$tip.label],a[as.character(1:tree$Nnode+n)])
}
}
mcmc<-as.data.frame(A)
param<-as.data.frame(B)
liab<-as.data.frame(C)
ace<-matrix(0,tree$Nnode,m,dimnames=list(colnames(A),seq))
burnin<-which(param[,"gen"]==con$burnin)
for(i in 1:tree$Nnode){
temp<-summary(mcmc[burnin:nrow(mcmc),i])/(nrow(mcmc)-burnin+1)
ace[i,names(temp)]<-temp
}
obj<-list(ace=ace,mcmc=mcmc,par=param,liab=liab,
tree=tree,x=x,model=model,
seq=seq,
ngen=ngen,sample=con$sample,
burnin=con$burnin)
class(obj)<-"ancThresh"
if(con$plot) plot(obj)
obj
}
## some S3 methods (added in 2017)
print.ancThresh<-function(x,...){
cat("\nObject containing the results from an MCMC analysis\nof the threshold model using ancThresh.\n\n")
cat("List with the following components:\n")
cat(paste("ace:\tmatrix with posterior probabilities assuming",x$burnin,
"\n\tburn-in generations.\n"))
cat("mcmc:\tposterior sample of liabilities at tips & internal\n")
cat(paste("\tnodes (a matrix with",nrow(x$mcmc),"rows &",ncol(x$mcmc),"columns).\n"))
cat("par:\tposterior sample of the relative positions of the\n")
cat(paste("\tthresholds, the log-likelihoods, and any other\n",
"\tmodel variables (a matrix with",nrow(x$par),"rows).\n\n"))
cat("The MCMC was run under the following conditions:\n")
cat(paste("\tseq =",paste(x$seq,collapse=" <-> "),
"\n\tmodel =",x$model,"\n\tnumber of generations =",x$ngen,
"\n\tsample interval=",x$sample,
"\n\tburn-in =",x$burnin,"\n\n"))
}
plot.ancThresh<-function(x,...){
if(hasArg(burnin)) burnin<-list(...)$burnin
else burnin<-x$burnin
args<-list(...)
if(is.null(args$lwd)) args$lwd<-1
if(is.null(args$ylim)) args$ylim<-c(-0.1*Ntip(x$tree),Ntip(x$tree))
if(is.null(args$offset)) args$offset<-0.5
if(is.null(args$ftype)) args$ftype="i"
args$tree<-x$tree
do.call(plotTree,args)
ii<-which(x$par[,1]==burnin)+1
LIAB<-as.matrix(x$liab)[ii:nrow(x$liab),]
THRESH<-as.matrix(x$par)[ii:nrow(x$par),1:length(x$seq)+1]
STATES<-matrix(NA,nrow(LIAB),ncol(LIAB),dimnames=dimnames(LIAB))
for(i in 1:nrow(LIAB)) STATES[i,]<-threshState(LIAB[i,],THRESH[i,])
PP<-t(apply(STATES,2,function(x,levs) summary(factor(x,levels=levs))/length(x),
levs=x$seq))
if(hasArg(piecol)) piecol<-list(...)$piecol
else piecol<-setNames(colorRampPalette(c("blue",
"yellow"))(length(x$seq)),x$seq)
if(hasArg(node.cex)) node.cex<-list(...)$node.cex
else node.cex<-0.6
nodelabels(pie=PP[1:x$tree$Nnode+Ntip(x$tree),],
piecol=piecol,cex=node.cex)
if(hasArg(tip.cex)) tip.cex<-list(...)$tip.cex
else tip.cex<-0.4
tiplabels(pie=PP[x$tree$tip.label,],piecol=piecol,
cex=tip.cex)
legend(x=par()$usr[1],y=par()$usr[1],legend=x$seq,pch=21,pt.bg=piecol,
pt.cex=2.2,bty="n")
invisible(PP)
}
# plots ancestral states from the threshold model
# written by Liam J. Revell 2012, 2014
plotThresh<-function(tree,x,mcmc,burnin=NULL,piecol,tipcol="input",legend=TRUE,...){
if(is.logical(legend)||is.vector(legend)){
if(is.logical(legend)&&legend==TRUE) leg<-setNames(names(piecol),names(piecol))
else if(is.vector(legend)){
leg<-legend[names(piecol)]
legend<-TRUE
}
}
# plot tree
par(lend=2)
plotTree(tree,ftype="i",lwd=1,ylim=if(legend) c(-0.1*length(tree$tip.label),length(tree$tip.label)) else NULL,...)
if(legend){
zz<-par()$cex; par(cex=0.6)
for(i in 1:length(piecol))
add.simmap.legend(leg=leg[i],colors=piecol[i],prompt=FALSE,x=0.02*max(nodeHeights(tree)),y=-0.1*length(tree$tip.label),vertical=FALSE,shape="square",fsize=1)
par(cex=zz)
}
# pull matrices from mcmc
ace<-mcmc$ace
liab<-mcmc$liab
param<-mcmc$par
# get burnin
if(is.null(burnin)) burnin<-round(0.2*max(param[,"gen"]))
burnin<-which(param[,"gen"]==burnin)
# check x
if(is.data.frame(x)) x<-as.matrix(x)
if(is.matrix(x)) X<-x[tree$tip.label,]
else if(is.vector(x)){
x<-x[tree$tip.label]
X<-to.matrix(x,names(piecol))
}
# row scale X
X/apply(X,1,sum)->X
# plot node labels
nodelabels(pie=ace,piecol=piecol[colnames(ace)],cex=0.6)
# plot tip labels
if(tipcol=="input") tiplabels(pie=X,piecol=piecol[colnames(X)],cex=0.6)
else if(tipcol=="estimated") {
XX<-matrix(NA,nrow(liab),length(tree$tip),dimnames=list(rownames(liab),colnames(liab)[1:length(tree$tip)]))
for(i in 1:nrow(liab)) XX[i,]<-threshState(liab[i,1:length(tree$tip)],thresholds=param[i,1:ncol(X)+1])
X<-t(apply(XX,2,function(x) summary(factor(x,levels=colnames(X)))))
tiplabels(pie=X/rowSums(X),piecol=piecol[colnames(X)],cex=0.6)
}
}
# computes DIC for threshold model
# written by Liam J. Revell 2012, 2014
threshDIC<-function(tree,x,mcmc,burnin=NULL,sequence=NULL,method="pD"){
## identify model
if(any(colnames(mcmc$par)=="alpha")) model<-"OU"
else if(any(colnames(mcmc$par)=="lambda")) model<-"lambda"
else model<-"BM"
# check x
if(is.data.frame(x)) x<-as.matrix(x)
if(is.matrix(x)){
X<-x[tree$tip.label,]
if(is.null(sequence)){
message("**** NOTE: no sequence provided, column order in x")
seq<-colnames(X)
} else seq<-sequence
} else if(is.vector(x)){
x<-x[tree$tip.label]
if(is.null(sequence)){
message("**** NOTE: no sequence provided, using alphabetical or numerical order")
seq<-sort(levels(as.factor(x)))
} else seq<-sequence
X<-to.matrix(x,seq)
}
# row scale X
X<-X/apply(X,1,sum)
X<-X[,seq] # order columns by seq
# convert burnin to starting row
if(is.null(burnin)) burnin<-0.2*max(mcmc$par[,"gen"])
start<-which(mcmc$par[,"gen"]==burnin)+1
# compute
k<-if(model=="BM") 1 else 2
thBar<-colMeans(mcmc$par[start:nrow(mcmc$par),2:(ncol(mcmc$par)-k)])
liabBar<-colMeans(mcmc$liab[start:nrow(mcmc$liab),])
if(model=="BM") V<-vcvPhylo(tree)
else if(model=="OU") V<-vcvPhylo(tree,model="OU",alpha=mean(mcmc$par[start:nrow(mcmc$par),"alpha"]))
else if(model=="lambda") V<-vcvPhylo(tree,model="lambda",lambda=mean(mcmc$par[start:nrow(mcmc$par),"lambda"]))
Dtheta<--2*(likLiab(liabBar[tree$tip.label],liabBar[as.character(1:tree$Nnode+length(tree$tip))],V,solve(V),determinant(V,logarithm=TRUE)$modulus[1])+log(probMatch(X[tree$tip.label,],liabBar[tree$tip.label],thBar,seq)))
D<--2*mcmc$par[start:nrow(mcmc$par),"logLik"]
Dbar<-mean(D)
if(method=="pD"){
pD<-Dbar-Dtheta
DIC<-pD+Dbar
result<-setNames(c(Dbar,Dtheta,pD,DIC),c("Dbar","Dhat","pD","DIC"))
} else if(method=="pV"){
pV<-var(D)/2
DIC<-pV+Dbar
result<-setNames(c(Dbar,Dtheta,pV,DIC),c("Dbar","Dhat","pV","DIC"))
}
return(result)
}
# internal functions for ancThresh, plotThresh, and threshDIC
## returns a state based on position relative to thresholds
## threshStateC is a function from phangorn>=2.3.1
threshState<-if(packageVersion("phangorn")>='2.3.1'){
function(x,thresholds){
res <- names(thresholds)[threshStateC(x, thresholds)]
names(res) <- names(x)
res
}
} else function(x,thresholds){
t<-c(-Inf,thresholds,Inf)
names(t)[length(t)]<-names(t)[length(t)-1]
i<-1
while(x>t[i]) i<-i+1
names(t)[i]
}
# likelihood function for the liabilities
likLiab<-function(l,a,V,invV,detV){
y<-c(l,a[2:length(a)])-a[1]
logL<--y%*%invV%*%y/2-nrow(V)*log(2*pi)/2-detV/2
return(logL)
}
# function for the log-prior
logPrior<-function(a,t,control){
# pp<-sum(log(diag(control$pr.anc[names(a),a])))+
pp<-sum(log(control$pr.anc[cbind(names(a),a)])) +
if(length(t)>2) sum(dexp(t[2:(length(t)-1)],rate=control$pr.th,log=TRUE)) else 0
return(pp)
}
# check if the liability predictions match observed data
allMatch<-function(x,l,thresholds){
result<-all(threshState(l,thresholds=thresholds)==x)
if(!is.na(result)) return(result)
else return(FALSE)
}
# check if the liability predictions match observed data & return a probability
# (this allows states to be uncertain)
probMatch<-function(X,l,thresholds,sequence){
Y<-to.matrix(threshState(l,thresholds=thresholds),sequence)
return(prod(rowSums(X*Y)))
}
# bounds parameter by bouncing
bounce<-function(start,step,bounds){
x<-start+step
while(x>bounds[2]||x<bounds[1]){
if(x>bounds[2]) x<-2*bounds[2]-x
if(x<bounds[1]) x<-2*bounds[1]-x
}
return(x)
}
# convert vector of x to binary matrix
to.matrix<-function(x,seq){
X<-matrix(0,length(x),length(seq),dimnames=list(names(x),seq))
for(i in 1:length(seq)) X[x==seq[i],i]<-1
return(X)
}
# convert binary matrix to vector
to.vector<-function(X) apply(X,1,rstate)
|