File: ancThresh.R

package info (click to toggle)
r-cran-phytools 0.6-60-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,620 kB
  • sloc: makefile: 2
file content (401 lines) | stat: -rw-r--r-- 14,527 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
## function performs ancestral character estimation under the threshold model
## written by Liam J. Revell 2012, 2013, 2014, 2017

ancThresh<-function(tree,x,ngen=10000,sequence=NULL,method="mcmc",model=c("BM","OU","lambda"),control=list(),...){

	if(!inherits(tree,"phylo")) stop("tree should be an object of class \"phylo\".")
	
	# check method
	if(method!="mcmc") stop(paste(c("do not recognize method =",method,",quitting")))

	# get model for the evolution of liability
	model<-model[1]

	# check x
	if(is.data.frame(x)) x<-as.matrix(x)
	if(is.matrix(x)){
		X<-x[tree$tip.label,]
		if(is.null(sequence)){
			message("**** NOTE: no sequence provided, column order in x")
 			seq<-colnames(X)
		} else seq<-sequence
	} else if(is.vector(x)){
		x<-x[tree$tip.label]
		if(is.null(sequence)){
			message("**** NOTE: no sequence provided, using alphabetical or numerical order")
 			seq<-sort(levels(as.factor(x)))
		} else seq<-sequence
		X<-to.matrix(x,seq)
	}
	# row scale X
	X<-X/apply(X,1,sum)
	X<-X[,seq] # order columns by seq

	# ok, now set starting thresholds
	th<-c(1:length(seq))-1; names(th)<-seq
	x<-to.vector(X)
	l<-sapply(x,function(x) runif(n=1,min=th[x]-1,max=th[x])) # set plausible starting liability
	if(model=="OU") alpha<-0.1*max(nodeHeights(tree))
	if(model=="lambda") lambda<-1.0

	# for MCMC
	n<-length(tree$tip)
	m<-length(th)
	npar<-if(model=="BM") tree$Nnode+n+m-2 else tree$Nnode+n+m-1
	

	# populate control list
	PrA<-matrix(1/m,tree$Nnode,m,dimnames=list(1:tree$Nnode+n,seq))
	if(!is.null(control$pr.anc)){
		if(!is.matrix(control$pr.anc)){
			message("**** NOTE: prior on ancestral states must be in matrix form; using default prior")
			control$pr.anc<-NULL
		} else {
			control$pr.anc<-control$pr.anc[,seq,drop=FALSE]
			PrA[rownames(control$pr.anc),]<-control$pr.anc
			control$pr.anc<-PrA	
		}
	}
	con=list(sample=1000,
		propliab=0.5*max(nodeHeights(tree)),
		propthresh=0.05*max(nodeHeights(tree)),
		propalpha=0.1*max(nodeHeights(tree)),
		proplambda=0.01,
		pr.anc=PrA,
		pr.th=0.01,
		burnin=round(0.2*ngen),
		plot=FALSE,
		print=TRUE,
		piecol=setNames(palette()[1:length(seq)],seq),
		tipcol="input",
		quiet=FALSE)
	con[(namc<-names(control))]<-control
	con<-con[!sapply(con,is.null)]

	# now set ancestral liabilities, by first picking ancestral states from their prior
	temp<-apply(con$pr.anc,1,rstate)
	# assign random liabilities consistent with the starting thresholds
	a<-sapply(temp,function(x) runif(n=1,min=th[x]-1,max=th[x]))

	# now change the upper limit of th to Inf
	th[length(th)]<-Inf

	# compute some matrices & values
	V<-if(model=="BM") vcvPhylo(tree) 
	   else if(model=="OU") vcvPhylo(tree,model="OU",alpha=alpha) 
	   else if(model=="lambda") vcvPhylo(tree,model="lambda",lambda=lambda)
	# check to make sure that V will be non-singular
	if(any(tree$edge.length<=(10*.Machine$double.eps)))
		stop("some branch lengths are 0 or nearly zero")
	invV<-solve(V)
	detV<-determinant(V,logarithm=TRUE)$modulus[1]
	lik1<-likLiab(l,a,V,invV,detV)+log(probMatch(X,l,th,seq))
	
	# store
	A<-matrix(NA,ngen/con$sample+1,tree$Nnode,dimnames=list(NULL,n+1:tree$Nnode))
	B<-if(model=="BM") matrix(NA,ngen/con$sample+1,m+2,dimnames=list(NULL,c("gen",names(th),"logLik")))
	   else if(model=="OU") matrix(NA,ngen/con$sample+1,m+3,dimnames=list(NULL,c("gen",names(th),"alpha","logLik")))
	   else if(model=="lambda") matrix(NA,ngen/con$sample+1,m+3,dimnames=list(NULL,c("gen",names(th),"lambda","logLik")))

	C<-matrix(NA,ngen/con$sample+1,tree$Nnode+n,dimnames=list(NULL,c(tree$tip.label,1:tree$Nnode+n)))
	A[1,]<-threshState(a,thresholds=th)
	B[1,]<-if(model=="BM") c(0,th,lik1) else if(model=="OU") c(0,th,alpha,lik1) else if(model=="lambda") c(0,th,lambda,lik1)
	C[1,]<-c(l[tree$tip.label],a[as.character(1:tree$Nnode+n)])

	# run MCMC
	message("MCMC starting....")
	logL<-lik1<-likLiab(l,a,V,invV,detV)+log(probMatch(X,l,th,seq))
	for(i in 1:ngen){
		lik1<-logL
		d<-i%%npar
		if(ngen>=1000) if(i%%1000==0) if(con$print) message(paste("gen",i))
		ap<-a; lp<-l; thp<-th
		if(model=="OU") alphap<-alpha
		if(model=="lambda") lambdap<-lambda
		Vp<-V; invVp<-invV; detVp<-detV
		if(d<=tree$Nnode&&d!=0){
			# update node liabilities
			ind<-d%%tree$Nnode; if(ind==0) ind<-tree$Nnode
			ap[ind]<-a[ind]+rnorm(n=1,sd=sqrt(con$propliab))
		} else {
			if((d>tree$Nnode&&d<=(tree$Nnode+n))||(npar==(tree$Nnode+n)&&d==0)){
				# update tip liabilities
				if(d==0) ind<-n
				else { ind<-(d-tree$Nnode)%%n; if(ind==0) ind<-n }
				lp[ind]<-l[ind]+rnorm(n=1,sd=sqrt(con$propliab))
			} else if(d>(tree$Nnode+n)&&d<=(tree$Nnode+n+m-2)||(npar==(tree$Nnode+n+m-2)&&d==0)) {
				# update thresholds
				if(d) ind<-(d-tree$Nnode-n)%%m+1
				else ind<-m-1
				thp[ind]<-bounce(th[ind],rnorm(n=1,sd=sqrt(con$propthresh)),c(th[ind-1],th[ind+1]))
			} else {
				if(model=="OU"){
					alphap<-bounce(alpha,rnorm(n=1,sd=sqrt(con$propalpha)),c(0,Inf))
					Vp<-vcvPhylo(tree,model="OU",alpha=alphap)
				} else if(model=="lambda"){
					lambdap<-bounce(lambda,rnorm(n=1,sd=sqrt(con$proplambda)),c(0,1))
					Vp<-vcvPhylo(tree,model="lambda",lambda=lambdap)
				}
				invVp<-solve(Vp)
				detVp<-determinant(Vp,logarithm=TRUE)$modulus[1]
			}
		}
		lik2<-likLiab(lp,ap,Vp,invVp,detVp)+log(probMatch(X,lp,thp,seq))
		p.odds<-min(c(1,exp(lik2+logPrior(threshState(ap,thresholds=thp),thp,con)-lik1-logPrior(threshState(a,thresholds=th),th,con))))

		if(p.odds>runif(n=1)){
			a<-ap; l<-lp; th<-thp
			V<-Vp; detV<-detVp; invV<-invVp
			if(model=="OU") alpha<-alphap
			if(model=="lambda") lambda<-lambdap
			logL<-lik2
		} else logL<-lik1
		if(i%%con$sample==0){ 
			A[i/con$sample+1,]<-threshState(a,thresholds=th)
			B[i/con$sample+1,]<-if(model=="BM") c(i,th[colnames(B)[1+1:m]],logL) else if(model=="OU") c(i,th[colnames(B)[1+1:m]],alpha,logL) else if(model=="lambda") c(i,th[colnames(B)[1+1:m]],lambda,logL)
			C[i/con$sample+1,]<-c(l[tree$tip.label],a[as.character(1:tree$Nnode+n)])
		}
	}
	mcmc<-as.data.frame(A)
	param<-as.data.frame(B)
	liab<-as.data.frame(C)
	ace<-matrix(0,tree$Nnode,m,dimnames=list(colnames(A),seq))
	burnin<-which(param[,"gen"]==con$burnin)
	for(i in 1:tree$Nnode){
		temp<-summary(mcmc[burnin:nrow(mcmc),i])/(nrow(mcmc)-burnin+1)
		ace[i,names(temp)]<-temp
	}
	obj<-list(ace=ace,mcmc=mcmc,par=param,liab=liab,
		tree=tree,x=x,model=model,
		seq=seq,
		ngen=ngen,sample=con$sample,
		burnin=con$burnin)
	class(obj)<-"ancThresh"
	if(con$plot) plot(obj)
	obj
}

## some S3 methods (added in 2017)

print.ancThresh<-function(x,...){
	cat("\nObject containing the results from an MCMC analysis\nof the threshold model using ancThresh.\n\n")
	cat("List with the following components:\n")
	cat(paste("ace:\tmatrix with posterior probabilities assuming",x$burnin,
		"\n\tburn-in generations.\n"))
	cat("mcmc:\tposterior sample of liabilities at tips & internal\n")
	cat(paste("\tnodes (a matrix with",nrow(x$mcmc),"rows &",ncol(x$mcmc),"columns).\n"))
	cat("par:\tposterior sample of the relative positions of the\n")
	cat(paste("\tthresholds, the log-likelihoods, and any other\n",
		"\tmodel variables (a matrix with",nrow(x$par),"rows).\n\n"))
	cat("The MCMC was run under the following conditions:\n")
	cat(paste("\tseq =",paste(x$seq,collapse=" <-> "),
		"\n\tmodel =",x$model,"\n\tnumber of generations =",x$ngen,
		"\n\tsample interval=",x$sample,
		"\n\tburn-in =",x$burnin,"\n\n"))
}

plot.ancThresh<-function(x,...){
	if(hasArg(burnin)) burnin<-list(...)$burnin 
	else burnin<-x$burnin
	args<-list(...)
	if(is.null(args$lwd)) args$lwd<-1
	if(is.null(args$ylim)) args$ylim<-c(-0.1*Ntip(x$tree),Ntip(x$tree))
	if(is.null(args$offset)) args$offset<-0.5
	if(is.null(args$ftype)) args$ftype="i"
	args$tree<-x$tree	
	do.call(plotTree,args)
	ii<-which(x$par[,1]==burnin)+1
	LIAB<-as.matrix(x$liab)[ii:nrow(x$liab),]
	THRESH<-as.matrix(x$par)[ii:nrow(x$par),1:length(x$seq)+1]
	STATES<-matrix(NA,nrow(LIAB),ncol(LIAB),dimnames=dimnames(LIAB))
	for(i in 1:nrow(LIAB)) STATES[i,]<-threshState(LIAB[i,],THRESH[i,])
	PP<-t(apply(STATES,2,function(x,levs) summary(factor(x,levels=levs))/length(x),
		levs=x$seq))
	if(hasArg(piecol)) piecol<-list(...)$piecol
	else piecol<-setNames(colorRampPalette(c("blue",
		"yellow"))(length(x$seq)),x$seq)
	if(hasArg(node.cex)) node.cex<-list(...)$node.cex
	else node.cex<-0.6
	nodelabels(pie=PP[1:x$tree$Nnode+Ntip(x$tree),],
		piecol=piecol,cex=node.cex)
	if(hasArg(tip.cex)) tip.cex<-list(...)$tip.cex
	else tip.cex<-0.4
	tiplabels(pie=PP[x$tree$tip.label,],piecol=piecol,
		cex=tip.cex)
	legend(x=par()$usr[1],y=par()$usr[1],legend=x$seq,pch=21,pt.bg=piecol,
		pt.cex=2.2,bty="n")
	invisible(PP)
}

# plots ancestral states from the threshold model
# written by Liam J. Revell 2012, 2014

plotThresh<-function(tree,x,mcmc,burnin=NULL,piecol,tipcol="input",legend=TRUE,...){

	if(is.logical(legend)||is.vector(legend)){
		if(is.logical(legend)&&legend==TRUE) leg<-setNames(names(piecol),names(piecol))
		else if(is.vector(legend)){ 
			leg<-legend[names(piecol)]
			legend<-TRUE
		}
	}

	# plot tree
	par(lend=2)
	plotTree(tree,ftype="i",lwd=1,ylim=if(legend) c(-0.1*length(tree$tip.label),length(tree$tip.label)) else NULL,...)
	if(legend){
		zz<-par()$cex; par(cex=0.6)
		for(i in 1:length(piecol))
			add.simmap.legend(leg=leg[i],colors=piecol[i],prompt=FALSE,x=0.02*max(nodeHeights(tree)),y=-0.1*length(tree$tip.label),vertical=FALSE,shape="square",fsize=1)
		par(cex=zz)
	}
	# pull matrices from mcmc
	ace<-mcmc$ace
	liab<-mcmc$liab
	param<-mcmc$par

	# get burnin
	if(is.null(burnin)) burnin<-round(0.2*max(param[,"gen"]))
	burnin<-which(param[,"gen"]==burnin)

	# check x
	if(is.data.frame(x)) x<-as.matrix(x)
	if(is.matrix(x)) X<-x[tree$tip.label,]
	else if(is.vector(x)){
		x<-x[tree$tip.label]
		X<-to.matrix(x,names(piecol))
	}
	# row scale X
	X/apply(X,1,sum)->X

	# plot node labels
	nodelabels(pie=ace,piecol=piecol[colnames(ace)],cex=0.6)

	# plot tip labels
	if(tipcol=="input") tiplabels(pie=X,piecol=piecol[colnames(X)],cex=0.6)
	else if(tipcol=="estimated") {
		XX<-matrix(NA,nrow(liab),length(tree$tip),dimnames=list(rownames(liab),colnames(liab)[1:length(tree$tip)]))
		for(i in 1:nrow(liab)) XX[i,]<-threshState(liab[i,1:length(tree$tip)],thresholds=param[i,1:ncol(X)+1])
		X<-t(apply(XX,2,function(x) summary(factor(x,levels=colnames(X)))))
		tiplabels(pie=X/rowSums(X),piecol=piecol[colnames(X)],cex=0.6)
	}
}

# computes DIC for threshold model
# written by Liam J. Revell 2012, 2014

threshDIC<-function(tree,x,mcmc,burnin=NULL,sequence=NULL,method="pD"){
	## identify model
	if(any(colnames(mcmc$par)=="alpha")) model<-"OU"
	else if(any(colnames(mcmc$par)=="lambda")) model<-"lambda"
	else model<-"BM"
	# check x
	if(is.data.frame(x)) x<-as.matrix(x)
	if(is.matrix(x)){
		X<-x[tree$tip.label,]
		if(is.null(sequence)){
			message("**** NOTE: no sequence provided, column order in x")
 			seq<-colnames(X)
		} else seq<-sequence
	} else if(is.vector(x)){
		x<-x[tree$tip.label]
		if(is.null(sequence)){
			message("**** NOTE: no sequence provided, using alphabetical or numerical order")
 			seq<-sort(levels(as.factor(x)))
		} else seq<-sequence
		X<-to.matrix(x,seq)
	}
	# row scale X
	X<-X/apply(X,1,sum)
	X<-X[,seq] # order columns by seq
	# convert burnin to starting row
	if(is.null(burnin)) burnin<-0.2*max(mcmc$par[,"gen"])
	start<-which(mcmc$par[,"gen"]==burnin)+1
	# compute
	k<-if(model=="BM") 1 else 2
	thBar<-colMeans(mcmc$par[start:nrow(mcmc$par),2:(ncol(mcmc$par)-k)])
	liabBar<-colMeans(mcmc$liab[start:nrow(mcmc$liab),])
	if(model=="BM")	V<-vcvPhylo(tree)
	else if(model=="OU") V<-vcvPhylo(tree,model="OU",alpha=mean(mcmc$par[start:nrow(mcmc$par),"alpha"]))
	else if(model=="lambda") V<-vcvPhylo(tree,model="lambda",lambda=mean(mcmc$par[start:nrow(mcmc$par),"lambda"]))
	Dtheta<--2*(likLiab(liabBar[tree$tip.label],liabBar[as.character(1:tree$Nnode+length(tree$tip))],V,solve(V),determinant(V,logarithm=TRUE)$modulus[1])+log(probMatch(X[tree$tip.label,],liabBar[tree$tip.label],thBar,seq)))
	D<--2*mcmc$par[start:nrow(mcmc$par),"logLik"]
	Dbar<-mean(D)
	if(method=="pD"){		
		pD<-Dbar-Dtheta
		DIC<-pD+Dbar
		result<-setNames(c(Dbar,Dtheta,pD,DIC),c("Dbar","Dhat","pD","DIC"))
	} else if(method=="pV"){
		pV<-var(D)/2
		DIC<-pV+Dbar
		result<-setNames(c(Dbar,Dtheta,pV,DIC),c("Dbar","Dhat","pV","DIC"))
	}
	return(result)
}

# internal functions for ancThresh, plotThresh, and threshDIC

## returns a state based on position relative to thresholds
## threshStateC is a function from phangorn>=2.3.1
threshState<-if(packageVersion("phangorn")>='2.3.1'){
	function(x,thresholds){
    res <- names(thresholds)[threshStateC(x, thresholds)]
    names(res) <- names(x)
    res
  }
} else function(x,thresholds){
	t<-c(-Inf,thresholds,Inf)
	names(t)[length(t)]<-names(t)[length(t)-1] 
	i<-1
	while(x>t[i]) i<-i+1
	names(t)[i]
}

# likelihood function for the liabilities
likLiab<-function(l,a,V,invV,detV){
	y<-c(l,a[2:length(a)])-a[1]
	logL<--y%*%invV%*%y/2-nrow(V)*log(2*pi)/2-detV/2
	return(logL)
}

# function for the log-prior
logPrior<-function(a,t,control){
#	pp<-sum(log(diag(control$pr.anc[names(a),a])))+
  pp<-sum(log(control$pr.anc[cbind(names(a),a)])) +
    if(length(t)>2) sum(dexp(t[2:(length(t)-1)],rate=control$pr.th,log=TRUE)) else 0				
	return(pp)		
}

# check if the liability predictions match observed data
allMatch<-function(x,l,thresholds){
	result<-all(threshState(l,thresholds=thresholds)==x)
	if(!is.na(result)) return(result)
	else return(FALSE)
}

# check if the liability predictions match observed data & return a probability
# (this allows states to be uncertain)
probMatch<-function(X,l,thresholds,sequence){
	Y<-to.matrix(threshState(l,thresholds=thresholds),sequence)
	return(prod(rowSums(X*Y)))
}

# bounds parameter by bouncing
bounce<-function(start,step,bounds){
	x<-start+step
	while(x>bounds[2]||x<bounds[1]){
		if(x>bounds[2]) x<-2*bounds[2]-x
		if(x<bounds[1]) x<-2*bounds[1]-x
	}
	return(x)
}

# convert vector of x to binary matrix
to.matrix<-function(x,seq){
	X<-matrix(0,length(x),length(seq),dimnames=list(names(x),seq))
	for(i in 1:length(seq)) X[x==seq[i],i]<-1
	return(X)
}

# convert binary matrix to vector
to.vector<-function(X) apply(X,1,rstate)