File: mcmcLambda.R

package info (click to toggle)
r-cran-phytools 0.6-60-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,620 kB
  • sloc: makefile: 2
file content (137 lines) | stat: -rw-r--r-- 5,548 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# function
# written by Liam J. Revell 2011, 2012, 2013

mcmcLambda<-function(tree,x,ngen=10000,control=list()){

	# starting values (for now)
	n<-length(tree$tip)
	temp<-aggregate(x,list(species=as.factor(names(x))),mean)
	xbar<-temp[,2]; names(xbar)<-temp[,1]; xbar<-xbar[tree$tip.label]
	sig2<-mean(pic(xbar,tree)^2)
	lambda<-1.0; max.lambda<-maxLambda(tree)
	a<-mean(xbar)
	intV<-mean(aggregate(x,list(species=as.factor(names(x))),var)[,2],na.rm=T)
	prop<-c(0.01*sig2,0.02,0.01*sig2,rep(0.01*sig2*max(vcv(tree)),n),0.01*intV)
	pr.mean<-c(1000,max.lambda/2,rep(0,n+1),1000)
	pr.var<-c(pr.mean[1]^2,max.lambda,rep(1000,n+1),pr.mean[length(pr.mean)]^2)

	# populate control list
	con=list(sig2=sig2,lambda=lambda,a=a,xbar=xbar,intV=intV,pr.mean=pr.mean,pr.var=pr.var,prop=prop,sample=100)
	con[(namc<-names(control))]<-control
	con<-con[!sapply(con,is.null)]
	# print control parameters to screen
	message("Control parameters (set by user or default):"); str(con)
	
	# function returns the log-likelihood
	likelihood<-function(C,invC,detC,x,sig2,a,xbar,intV){
		z<-xbar-a
		logLik<--z%*%invC%*%z/(2*sig2)-nrow(C)*log(2*pi)/2-nrow(C)*log(sig2)/2-detC/2+sum(dnorm(x,xbar[names(x)],sd=sqrt(intV),log=T))
		return(logLik)
	}

	# function returns the log prior probability
	log.prior<-function(sig2,lambda,a,xbar,intV){
		pp<-dexp(sig2,rate=1/con$pr.mean[1],log=T)+dunif(lambda,min=con$pr.mean[2]-con$pr.var[2]/2,max=con$pr.mean[2]+con$pr.var[2]/2,log=T)+sum(dnorm(c(a,xbar),mean=con$pr.mean[1+1:(n+1)],sd=sqrt(con$pr.var[1+1:(n+1)]),log=T))+dexp(intV,rate=1/con$pr.mean[length(con$pr.mean)],log=T)
		return(pp)
	}

	# compute (starting values for) C
	C1<-vcv.phylo(tree) # used for updates of lambda
	C<-lambda.transform(con$lambda,C1)
	invC<-solve(C)
	detC<-determinant(C,logarithm=TRUE)$modulus[1]

	# now set starting values for MCMC
	sig2<-con$sig2; lambda<-con$lambda; a<-con$a; xbar<-con$xbar; intV<-con$intV
	L<-likelihood(C,invC,detC,x,sig2,a,xbar,intV)
	Pr<-log.prior(sig2,lambda,a,xbar,intV)

	# store
	X<-matrix(NA,ngen/con$sample+1,n+6,dimnames=list(NULL,c("gen","sig2","lambda","a",tree$tip.label,"var","logLik")))
	X[1,]<-c(0,sig2,lambda,a,xbar,intV,L)

	message("Starting MCMC...")

	# start MCMC
	for(i in 1:ngen){
		j<-(i-1)%%(n+4)
		if(j==0){
			# update sig2
			sig2.prime<-sig2+rnorm(n=1,sd=sqrt(con$prop[j+1]))
			if(sig2.prime<0) sig2.prime<--sig2.prime
			L.prime<-likelihood(C,invC,detC,x,sig2.prime,a,xbar,intV)
			Pr.prime<-log.prior(sig2.prime,lambda,a,xbar,intV)
			post.odds<-min(1,exp(Pr.prime+L.prime-Pr-L),na.rm=T)
			if(post.odds>runif(n=1)){
				if(i%%con$sample==0) X[i/con$sample+1,]<-c(i,sig2.prime,lambda,a,xbar,intV,L.prime)
				sig2<-sig2.prime
				L<-L.prime
				Pr<-Pr.prime
			} else if(i%%con$sample==0) X[i/con$sample+1,]<-c(i,sig2,lambda,a,xbar,intV,L)
		} else if(j==1){
			# update lambda
			lambda.prime<-lambda+rnorm(n=1,sd=sqrt(con$prop[j+1]))
			while(lambda.prime<0||lambda.prime>max.lambda){
				if(lambda.prime<0) lambda.prime<--lambda.prime
				if(lambda.prime>max.lambda) lambda.prime<-2*max.lambda-lambda.prime
			}
			# update C with new lambda
			C.prime<-lambda.transform(lambda.prime,C1)
			invC.prime<-solve(C.prime)
			detC.prime<-determinant(C.prime,logarithm=TRUE)$modulus[1]
			L.prime<-likelihood(C.prime,invC.prime,detC.prime,x,sig2,a,xbar,intV)
			Pr.prime<-log.prior(sig2,lambda.prime,a,xbar,intV)
			post.odds<-min(1,exp(Pr.prime+L.prime-Pr-L),na.rm=T)
			if(post.odds>runif(n=1)){ 
				if(i%%con$sample==0) X[i/con$sample+1,]<-c(i,sig2,lambda.prime,a,xbar,intV,L.prime)
				lambda<-lambda.prime
				C<-C.prime; invC<-invC.prime; detC<-detC.prime
				L<-L.prime
				Pr<-Pr.prime
			} else if(i%%con$sample==0) X[i/con$sample+1,]<-c(i,sig2,lambda,a,xbar,intV,L)
		} else if(j==2){
			# update a
			a.prime<-a+rnorm(n=1,sd=sqrt(con$prop[j+1]))
			L.prime<-likelihood(C,invC,detC,x,sig2,a.prime,xbar,intV)
			Pr.prime<-log.prior(sig2,lambda,a.prime,xbar,intV)
			post.odds<-min(1,exp(Pr.prime+L.prime-Pr-L),na.rm=T)
			if(post.odds>runif(n=1)){ 
				if(i%%con$sample==0) X[i/con$sample+1,]<-c(i,sig2,lambda,a.prime,xbar,intV,L.prime)
				a<-a.prime
				L<-L.prime
				Pr<-Pr.prime
			} else if(i%%con$sample==0) X[i/con$sample+1,]<-c(i,sig2,lambda,a,xbar,intV,L)
		} else if(j>2&&j<=(n+2)) {
			k<-j-2 # update tip mean k
			xbar.prime<-xbar
			xbar.prime[k]<-xbar[k]+rnorm(n=1,sd=sqrt(con$prop[j+1]))
			L.prime<-likelihood(C,invC,detC,x,sig2,a,xbar.prime,intV)
			Pr.prime<-log.prior(sig2,lambda,a,xbar.prime,intV)
			post.odds<-min(1,exp(Pr.prime+L.prime-Pr-L),na.rm=T)
			if(post.odds>runif(n=1)){ 
				if(i%%con$sample==0) X[i/con$sample+1,]<-c(i,sig2,lambda,a,xbar.prime,intV,L.prime)
				xbar<-xbar.prime
				L<-L.prime
				Pr<-Pr.prime
			} else if(i%%con$sample==0) X[i/con$sample+1,]<-c(i,sig2,lambda,a,xbar,intV,L)
		} else if(j>(n+2)){
			# update var
			intV.prime<-intV+rnorm(n=1,sd=sqrt(con$prop[j+1]))
			if(intV.prime<0) intV.prime<--intV.prime
			L.prime<-likelihood(C,invC,detC,x,sig2,a,xbar,intV.prime)
			Pr.prime<-log.prior(sig2,lambda,a,xbar,intV.prime)
			post.odds<-min(1,exp(Pr.prime+L.prime-Pr-L),na.rm=T)
			if(post.odds>runif(n=1)){ 
				if(i%%con$sample==0) X[i/con$sample+1,]<-c(i,sig2,lambda,a,xbar,intV.prime,L.prime)
				intV<-intV.prime
				L<-L.prime
				Pr<-Pr.prime
			} else if(i%%con$sample==0) X[i/con$sample+1,]<-c(i,sig2,lambda,a,xbar,intV,L)	
		}
	}

	# done MCMC
	message("Done MCMC.")
	return(X)
}