1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
## function to simulate a pure-birth phylogenetic tree or trees
## written by Liam J. Revell 2011-2015, 2018
pbtree<-function(b=1,d=0,n=NULL,t=NULL,scale=NULL,nsim=1,
type=c("continuous","discrete"),...){
# get arguments
if(hasArg(ape)) ape<-list(...)$ape
else ape<-TRUE
if(hasArg(quiet)) quiet<-list(...)$quiet
else quiet<-FALSE
if(hasArg(extant.only)) extant.only<-list(...)$extant.only
else extant.only<-FALSE
if(hasArg(max.count)) max.count<-list(...)$max.count
else max.count<-1e5
if(hasArg(method)) method<-list(...)$method
else method<-"rejection"
if(hasArg(tip.label)){
tip.label<-list(...)$tip.label
if(!is.null(tip.label)){
if(is.null(n)){
tip.label<-NULL
cat("Warning: tip.label not allowed for n=NULL.\n")
cat(" using default labels\n")
} else if(length(tip.label)==n){
if(d>0){
cat("Warning: only using labels in tip.label for extant tips.\n")
cat(" extinct tips will be labeled X1, X2, etc.\n")
}
} else if(length(tip.label)!=n) {
cat("Warning: length(tip.label) and n do not match.\n")
cat(" using default labels\n")
tip.label<-NULL
}
}
} else tip.label<-NULL
type<-matchType(type[1],c("continuous","discrete"))
if(type=="discrete"){
if((b+d)>1){
cat("Warning:\n b + d cannot exceed 1.0 in discrete-time simulations\n")
cat(paste(" setting b & d to",b/(b+d),"and",d/(b+d),"respectively\n"))
b<-b/(b+d)
d<-d/(b+d)
}
}
tol<-1e-12
# done get arguments
# if nsim > 1 replicate nsim times
if(nsim>1){
trees<-replicate(nsim,pbtree(b,d,n,t,scale,type=type,ape=ape,quiet=quiet,extant.only=extant.only,method=method,tip.label=tip.label),simplify=FALSE)
class(trees)<-"multiPhylo"
return(trees)
} else {
if(!is.null(n)) NN<-n else NN<-NULL
if(!is.null(n)&&!is.null(t)){
if(method=="rejection"){
# simulate taxa & time stop using rejection sampling to max.count
if(!quiet){
cat("simulating with both taxa-stop (n) and time-stop (t) is\n")
cat("performed via rejection sampling & may be slow\n\n")
}
N<-0; T<-0; count<--1
while((N!=n||T<t)&&count<max.count){
tree<-pbtree(b,d,t=t,type=type,ape=FALSE,extant.only=extant.only,quiet=TRUE)
if(is.null(tree)) N<-T<-0
else {
N<-if(d>0&&extant.only==FALSE) length(getExtant(tree)) else length(tree$tip.label)
T<-max(nodeHeights(tree))
}
count<-count+1
}
if(N==n&&T>=(t-tol)){
if(!quiet) cat(paste(" ",count," trees rejected before finding a tree\n\n",sep=""))
} else {
if(!quiet) cat(paste(" max count of ",count," reached without finding a tree\n\n",sep=""))
tree<-NULL
}
# done simulate taxa & time stop
} else if(method=="direct"){
# simulate using direct sampling (experimental)
if(!quiet){
cat("simulating with both taxa-stop (n) & time-stop (t) using\n")
cat("'direct' sampling. this is experimental\n")
}
m<-2
while(m[length(m)]!=n){
ll<-bd<-vector(); m<-2; i<-1
while(sum(ll)<t){
ll[i]<-rexp(n=1,rate=m[i]*(b+d))
if(sum(ll)<t) bd[i]<-2*rbinom(n=1,size=1,prob=b/(b+d))-1 else bd[i]<-0
m[i+1]<-m[i]+bd[i]; i<-i+1
if(m[i]==0) break
}
}
ll[length(ll)]<-ll[length(ll)]+t-sum(ll)
bd<-bd
node<-1; dead<-1
edge<-matrix(c(node,NA,node,NA),2,2,byrow=T)
edge.length<-c(0,0)
node<-node+1
for(i in 1:length(bd)){
o<-is.na(edge[,2])
p<-which(o)
l<-ll[i]
birth<-if(bd[i]==1) TRUE else FALSE
q<-if(length(p)>1) sample(p,size=1) else p
if(birth){
# new edge
edge[q,2]<-node
edge<-rbind(edge,matrix(c(node,NA,node,NA),2,2,byrow=T))
node<-node+1
} else {
edge[q,2]<--dead
dead<-dead+1
}
edge.length[p]<-edge.length[p]+l
if(birth) edge.length<-c(edge.length,rep(0,2))
}
edge[edge[,2]<0,2]<-NA
o<-is.na(edge[,2])
n<-sum(o)
edge<-edge+n
p<-which(o)
edge[o,2]<-1:sum(is.na(edge[,2]))
# build 'phylo' object
tree<-list(edge=edge,edge.length=edge.length,tip.label=paste("t",1:n,sep=""),Nnode=n-1)
class(tree)<-"phylo"
# done simulate using direct sampling (experimental)
}
} else {
if(!is.null(t)){
# simulation time stop
node<-1; dead<-1
edge<-matrix(c(node,NA,node,NA),2,2,byrow=T)
edge.length<-c(0,0)
node<-node+1; tt<-0
while(tt<t){
o<-is.na(edge[,2])
if(!any(o)) break
p<-which(o)
if(type=="discrete"){
l<-rgeom(n=sum(o),prob=b+d)+1
l<-l[which(l==min(l))]
} else l<-rexp(n=1,sum(o)*(b+d))
tt<-tt+l[1]
if(tt>=t) l<-l-tt+t
else {
birth<-sapply(runif(n=length(l)),function(x) if(x<b/(b+d)) TRUE else FALSE)
q<-if(length(p)>1) sample(p)[1:min(length(p),length(l))] else p
for(i in 1:length(l)){
if(birth[i]){
# new edge
edge[q[i],2]<-node
edge<-rbind(edge,matrix(c(node,NA,node,NA),2,2,byrow=T))
node<-node+1
} else {
edge[q[i],2]<--dead
dead<-dead+1
}
}
}
edge.length[p]<-edge.length[p]+l[1]
edge.length<-c(edge.length,rep(0,2*length(l)))
}
edge[edge[,2]<0,2]<-NA
o<-is.na(edge[,2])
n<-sum(o)
edge<-edge+n
p<-which(o)
edge[o,2]<-1:sum(is.na(edge[,2]))
# done unique part of time stop
} else if(!is.null(n)) {
# simulate taxa stop
node<-1
edge<-matrix(c(node,NA,node,NA),2,2,byrow=T)
edge.length<-c(0,0)
node<-node+1; dead<-1; nn<-2
while(nn<n){
o<-is.na(edge[,2])
if(!any(o)) break
p<-which(o)
if(type=="discrete"){
l<-rgeom(n=sum(o),prob=b+d)+1
l<-l[which(l==min(l))]
} else l<-rexp(n=1,sum(o)*(b+d))
birth<-birth<-sapply(runif(n=length(l)),function(x) if(x<b/(b+d)) TRUE else FALSE)
q<-if(length(p)>1) sample(p)[1:min(length(p),length(l))] else p
for(i in 1:length(l)){
if(birth[i]){
# new edge
edge[q[i],2]<-node
edge<-rbind(edge,matrix(c(node,NA,node,NA),2,2,byrow=T))
node<-node+1
} else {
edge[q[i],2]<--dead
dead<-dead+1
}
}
edge.length[p]<-edge.length[p]+l[1]
edge.length<-c(edge.length,rep(0,2*length(l)))
nn<-sum(is.na(edge[,2]))
}
edge[edge[,2]<0,2]<-NA
o<-is.na(edge[,2])
nn<-sum(o)
edge<-edge+nn
p<-which(o)
l<-if(type=="discrete") min(rgeom(n=sum(o),prob=(b+d))+1) else rexp(n=1,sum(o)*(b+d))
edge.length[p]<-edge.length[p]+l
edge[is.na(edge[,2]),2]<-1:sum(is.na(edge[,2]))
if((nn-dead+1)>n&&!quiet){
# this might happen in discrete time only
cat("Warning:\n due to multiple speciation events in the final time interval\n")
cat(" realized n may not equal input n\n\n")
if(!is.null(tip.label)){
cat("Warning: length(tip.label) and n do not match.\n")
cat(" using default labels\n")
tip.label<-NULL
}
}
n<-nn
# done unique part of taxa stop
}
# build 'phylo' object with temporary labels
tree<-list(edge=edge,edge.length=edge.length,tip.label=1:n,Nnode=n-1)
class(tree)<-"phylo"
if(!is.null(scale)){
# rescale if scale!=NULL
h<-max(nodeHeights(tree))
tree$edge.length<-scale*tree$edge.length/h
}
if(d>0&&extant.only){
# prune extinct tips if extant.only==TRUE
if(length(getExtinct(tree))==(length(tree$tip.label)-1)){
if(!quiet) cat("Warning:\n no extant tips, tree returned as NULL\n")
tree<-NULL
} else tree<-drop.tip(tree,getExtinct(tree))
}
# if tree!=NULL assign final tip labels
if(!is.null(tree)) tree$tip.label<-paste("t",1:length(tree$tip.label),sep="")
}
# if ape==TRUE make sure 'phylo' is consistent with ape
if(ape&&is.null(tree)==FALSE) tree<-read.tree(text=write.tree(tree))
if(!is.null(tip.label)){
th<-max(nodeHeights(tree))
if(length(getExtant(tree,tol=1e-08*th))!=NN){
# simulation must have gone extint before reaching NN
tree$tip.label<-paste("X",1:length(tree$tip.label),sep="")
} else {
ll<-getExtant(tree,tol=1e-08*th)
ii<-sapply(ll,function(x,y) which(x==y),y=tree$tip.label)
tree$tip.label[ii]<-tip.label
tree$tip.label[-ii]<-paste("X",1:(length(tree$tip.label)-length(ii)),sep="")
}
}
# done
return(tree)
}
}
|