1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
|
#' Generalized Method of Moments (GMM) Estimation for Panel Data
#'
#' Generalized method of moments estimation for static or dynamic
#' models with panel data.
#'
#'
#' `pgmm` estimates a model for panel data with a generalized method
#' of moments (GMM) estimator. The description of the model to
#' estimate is provided with a multi--part formula which is (or which
#' is coerced to) a `Formula` object. The first right--hand side part
#' describes the covariates. The second one, which is mandatory,
#' describes the GMM instruments. The third one, which is optional,
#' describes the 'normal' instruments. By default, all the variables
#' of the model which are not used as GMM instruments are used as
#' normal instruments with the same lag structure as the one specified
#' in the model.
#'
#' `y~lag(y, 1:2)+lag(x1, 0:1)+lag(x2, 0:2) | lag(y, 2:99)` is similar to
#'
#' `y~lag(y, 1:2)+lag(x1, 0:1)+lag(x2, 0:2) | lag(y, 2:99) | lag(x1,
#' 0:1)+lag(x2, 0:2)`
#'
#' and indicates that all lags from 2 of `y` are used
#' as GMM instruments.
#'
#' `transformation` indicates how the model should be transformed for
#' the estimation. `"d"` gives the "difference GMM" model
#' \insertCite{@see @AREL:BOND:91}{plm}, `"ld"` the "system GMM" model
#' \insertCite{@see @BLUN:BOND:98}{plm}.
#'
#' `pgmm` is an attempt to adapt GMM estimators available within the
#' DPD library for GAUSS \insertCite{@see @AREL:BOND:98}{plm} and Ox
#' \insertCite{@see @DOOR:AREL:BOND:12}{plm} and within the xtabond2
#' library for Stata \insertCite{@see @ROOD:09}{plm}.
#'
#' @aliases pgmm
#' @param formula a symbolic description for the model to be
#' estimated. The preferred interface is now to indicate a
#' multi--part formula, the first two parts describing the
#' covariates and the GMM instruments and, if any, the third part
#' the 'normal' instruments,
#' @param object,x an object of class `"pgmm"`,
#' @param data a `data.frame` (neither factors nor character vectors
#' will be accepted in `data.frame`),
#' @param subset see [lm()],
#' @param na.action see [lm()],
#' @param effect the effects introduced in the model, one of
#' `"twoways"` (the default) or `"individual"`,
#' @param model one of `"onestep"` (the default) or `"twosteps"`,
#' @param collapse if `TRUE`, the GMM instruments are collapsed (default is
#' `FALSE`),
#' @param lost.ts the number of lost time series: if `NULL`, this is
#' automatically computed. Otherwise, it can be defined by the
#' user as a numeric vector of length 1 or 2. The first element is
#' the number of lost time series in the model in difference, the
#' second one in the model in level. If the second element is
#' missing, it is set to the first one minus one,
#' @param transformation the kind of transformation to apply to the
#' model: either `"d"` (the default value) for the
#' "difference GMM" model or `"ld"` for the "system GMM" model,
#' @param fsm the matrix for the one step estimator: one of `"I"`
#' (identity matrix) or `"G"` (\eqn{=D'D} where \eqn{D} is the
#' first--difference operator) if `transformation="d"`, one of
#' `"GI"` or `"full"` if `transformation="ld"`,
# TODO: fms = NULL (default)/"full"/"GI" not explained; arg fsm is not evaluated at all
#' @param index the indexes,
#' @param \dots further arguments.
#' @param robust for pgmm's summary method: if `TRUE` (default), robust inference
#' is performed in the summary,
#' @param time.dummies for pgmm's summary method: if `TRUE`, the estimated
#' coefficients of time dummies are present in the table of coefficients;
#' default is `FALSE`, thus time dummies are dropped in summary's coefficient
#' table (argument is only meaningful if there are time dummies in the model,
#' i.e., only for `effect = "twoways"`),
#' @param digits digits,
#' @param width the maximum length of the lines in the print output.
#' @return An object of class `c("pgmm","panelmodel")`, which has the
#' following elements:
#'
#' \item{coefficients}{the vector (or the list for fixed effects) of
#' coefficients,}
#' \item{residuals}{the list of residuals for each individual,}
#' \item{vcov}{the covariance matrix of the coefficients,}
#' \item{fitted.values}{the vector of fitted values,}
#' \item{df.residual}{degrees of freedom of the residuals,}
#' \item{model}{a list containing the variables used for the
#' estimation for each individual,}
#' \item{W}{a list containing the instruments for each individual (a matrix per
#' list element) (two lists in case of system GMM,}
# TODO: not correct W does not contain two lists for system GMM
#' \item{A1}{the weighting matrix for the one--step estimator,}
#' \item{A2}{the weighting matrix for the two--steps estimator,}
#' \item{call}{the call.}
#'
#' In addition, it has attribute `"pdim"` which contains the pdim object for
#' model.
#'
#' It has `print`, `summary` and `print.summary` methods.
#' @author Yves Croissant
#' @export
#' @importFrom MASS ginv
#' @seealso
#'
#' [sargan()] for the Hansen--Sargan test and [mtest()] for
#' Arellano--Bond's test of serial correlation. [dynformula()] for
#' dynamic formulas (deprecated).
#' @references
#'
#' \insertAllCited{}
#'
#' @keywords regression
#' @examples
#'
#' data("EmplUK", package = "plm")
#'
#' ## Arellano and Bond (1991), table 4 col. b
#' z1 <- pgmm(log(emp) ~ lag(log(emp), 1:2) + lag(log(wage), 0:1)
#' + log(capital) + lag(log(output), 0:1) | lag(log(emp), 2:99),
#' data = EmplUK, effect = "twoways", model = "twosteps")
#' summary(z1, robust = FALSE)
#'
#' ## Blundell and Bond (1998) table 4 (cf. DPD for OX p. 12 col. 4)
#' z2 <- pgmm(log(emp) ~ lag(log(emp), 1)+ lag(log(wage), 0:1) +
#' lag(log(capital), 0:1) | lag(log(emp), 2:99) +
#' lag(log(wage), 2:99) + lag(log(capital), 2:99),
#' data = EmplUK, effect = "twoways", model = "onestep",
#' transformation = "ld")
#' summary(z2, robust = TRUE)
#'
#' \dontrun{
#' ## Same with the old formula or dynformula interface
#' ## Arellano and Bond (1991), table 4, col. b
#' z1 <- pgmm(log(emp) ~ log(wage) + log(capital) + log(output),
#' lag.form = list(2,1,0,1), data = EmplUK,
#' effect = "twoways", model = "twosteps",
#' gmm.inst = ~log(emp), lag.gmm = list(c(2,99)))
#' summary(z1, robust = FALSE)
#'
#' ## Blundell and Bond (1998) table 4 (cf DPD for OX p. 12 col. 4)
#' z2 <- pgmm(dynformula(log(emp) ~ log(wage) + log(capital), list(1,1,1)),
#' data = EmplUK, effect = "twoways", model = "onestep",
#' gmm.inst = ~log(emp) + log(wage) + log(capital),
#' lag.gmm = c(2,99), transformation = "ld")
#' summary(z2, robust = TRUE)
#' }
#'
pgmm <- function(formula, data, subset, na.action,
effect = c("twoways", "individual"),
model = c("onestep", "twosteps"),
collapse = FALSE, # TODO: collapse does not seem to be assumed a locigal in the code below but rahter a character vector
lost.ts = NULL,
transformation = c("d", "ld"),
fsm = NULL, # TODO: argument 'fsm' is not evaluated,
index = NULL, ...) {
# yX : response / covariates, W : gmm instruments, Z : normal
# instruments, V : time dummies
# cl <- match.call(expand.dots = FALSE)
cl <- match.call(expand.dots = TRUE)
effect <- match.arg(effect)
model <- match.arg(model)
transformation <- match.arg(transformation)
namesV <- NULL
#################################################################
##### 1. Backward compatibility with the old formula / dynformula
##### interface
#################################################################
if (inherits(formula, "dynformula") || length(Formula(formula))[2L] == 1L){
if (!inherits(formula, "dynformula")){
formula <- match.call(expand.dots = TRUE)
m <- match(c("formula", "lag.form", "diff.form", "log.form"),names(formula),0)
formula <- formula[c(1L, m)]
formula[[1L]] <- as.name("dynformula")
formula <- cl$formula <- eval(formula, parent.frame())
}
response.name <- paste(deparse(formula[[2L]]))
main.lags <- attr(formula, "lag")
if (length(main.lags[[1L]]) == 1L && main.lags[[1L]] > 1L)
main.lags[[1L]] <- c(1L, main.lags[[1L]])
main.lags[2:length(main.lags)] <- lapply(main.lags[2:length(main.lags)],
function(x){
if (length(x) == 1L && x != 0) x <- c(0, x)
x
})
main.form <- dynterms2formula(main.lags, response.name)
dots <- list(...)
gmm.inst <- dots$gmm.inst
lag.gmm <- dots$lag.gmm
instruments <- dots$instruments
gmm.form <- dynformula(gmm.inst, lag.form = lag.gmm)
gmm.lags <- attr(gmm.form, "lag")
gmm.lags <- lapply(gmm.lags, function(x) min(x):max(x))
gmm.form <- dynterms2formula(gmm.lags)
formula <- as.Formula(main.form, gmm.form)
}
#################################################################
##### 2. Extract the response/covariates, the gmm instruments and
##### the "normal" instruments, as a named list containing the lag
##### structure
#################################################################
x <- formula
if (!inherits(x, "Formula")) x <- Formula(formula)
# gmm instruments : named list with the lags, names being the variables
gmm.form <- formula(x, rhs = 2, lhs = 0)
gmm.lags <- dynterms(gmm.form)
cardW <- length(gmm.lags)
if (is.null(names(collapse))){
if (length(collapse) == 1L){
collapse <- as.vector(rep(collapse, cardW), mode = "list")
}
else{
if (length(collapse) != cardW) stop("the 'collapse' vector has a wrong length")
}
names(collapse) <- names(gmm.lags)
}
else{
if (any(! (names(collapse) %in% names(gmm.lags)))) stop("unknown names in the 'collapse' vector")
else{
bcollapse <- as.vector(rep(FALSE, cardW), mode = "list")
names(bcollapse) <- names(gmm.lags)
bcollapse[names(collapse)] <- collapse
collapse <- bcollapse
}
}
# covariates : named list with the lags, names being the variables
main.form <- formula(x, rhs = 1, lhs = 1)
main.lags <- dynterms(main.form)
# Three possibilities for 'normal' instruments :
# 1. the third part of the formula describes them
# 2. all variables not used as gmm are normal instruments
# 3. all variables are gmm instruments and therefore, there are no
# normal instruments except maybe time dummies
# the third part of the formula (if any) deals with the 'normal' instruments
if (length(x)[2L] == 3L){
normal.instruments <- TRUE
inst.form <- formula(x, rhs = 3, lhs = 0)
# the . - x1 + x2 syntax is allowed, in this case update with the first part
inst.form <- update(main.form, inst.form)
inst.form <- formula(Formula(inst.form), lhs = 0)
inst.lags <- dynterms(inst.form)
}
else{
# the default 'normal' instruments is the subset of covariates
# which are not used as gmm instruments
iv <- names(main.lags)[! names(main.lags) %in% names(gmm.lags)]
inst.lags <- main.lags[iv]
# generate the formula for 'normal' instruments
if (length(inst.lags) > 0L){
normal.instruments <- TRUE
inst.form <- dynterms2formula(inst.lags)
}
else{
# the case where there are no normal instruments : set inst.form
# and inst.lags to NULL
normal.instruments <- FALSE
inst.form <- NULL
inst.lags <- NULL
}
}
#################################################################
##### 3. How many time series are lost
#################################################################
if (!is.null(lost.ts)){
if (!is.numeric(lost.ts)) stop("argument 'lost.ts' should be numeric")
lost.ts <- as.numeric(lost.ts)
if (!(length(lost.ts) %in% c(1L, 2L))) stop("argument 'lost.ts' should be of length 1 or 2")
TL1 <- lost.ts[1L]
TL2 <- if(length(lost.ts) == 1L) { TL1 - 1 } else lost.ts[2L]
}
else{
# How many time series are lost? May be the maximum number of lags
# of any covariates + 1 because of first - differencing or the
# largest minimum lag for any gmm or normal instruments
# min or max to select the number of lost time series?
gmm.minlag <- min(unlist(gmm.lags, use.names = FALSE)) # was (==): min(sapply(gmm.lags, min))
inst.maxlag <- if (!is.null(inst.lags)) max(unlist(inst.lags, use.names = FALSE)) else 0 # was (==): max(sapply(inst.lags, max)) else 0
main.maxlag <- max(unlist(main.lags, use.names = FALSE)) # was (==): max(sapply(main.lags, max))
TL1 <- max(main.maxlag + 1, inst.maxlag + 1, gmm.minlag)
TL2 <- max(main.maxlag, inst.maxlag, gmm.minlag - 1)
# if TL2 = 0 (no lags), one observation is lost anyway because of
# the differentiation of the lag instruments
TL1 <- max(main.maxlag + 1, gmm.minlag) ## TODO: TL1, TL2 calc. twice and prev. result overwritten!?!
TL2 <- max(main.maxlag, gmm.minlag - 1)
}
#################################################################
##### 4. Compute the model frame which contains the
##### response/covariates, the gmm instruments and the 'normal'
##### instruments without the lags
#################################################################
gmm.form <- as.formula(paste("~", paste(names(gmm.lags), collapse = "+")))
if (!is.null(inst.form)) Form <- as.Formula(main.form, gmm.form, inst.form)
else Form <- as.Formula(main.form, gmm.form)
mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "subset", "na.action", "index"), names(mf), 0L)
mf <- mf[c(1L, m)]
mf$drop.unused.levels <- TRUE
mf[[1L]] <- as.name("plm")
mf$model <- NA
mf$formula <- Form
mf$na.action <- "na.pass"
mf$subset <- NULL
data <- eval(mf, parent.frame())
index <- index(data)
pdim <- pdim(data)
N <- pdim$nT$n
T <- pdim$nT$T
balanced <- pdim$balanced
# if the data is unbalanced, "balance" the data
if (!balanced){
un.id <- sort(unique(index(data, "id")))
un.time <- sort(unique(index(data, "time")))
rownames(data) <- paste(index(data, "id"), index(data, "time"), sep = ".")
allRows <- as.character(t(outer(un.id, un.time, paste, sep = ".")))
data <- data[allRows, ]
rownames(data) <- allRows
index <- data.frame(id = rep(un.id, each = length(un.time)),
time = rep(un.time, length(un.id)),
row.names = rownames(data))
class(index) <- c("pindex", "data.frame")
attr(data, "index") <- index
}
#################################################################
##### 5. Get the response/covariates matrix yX, the gmm instruments
##### matrix W and the normal instruments matrix inst, split by
##### individuals
#################################################################
attr(data, "formula") <- formula(main.form)
yX <- extract.data(data)
names.coef <- colnames(yX[[1L]])[-1L]
Z <- if(normal.instruments){
attr(data, "formula") <- inst.form
extract.data(data)
} else NULL
attr(data, "formula") <- gmm.form
W <- extract.data(data, as.matrix = FALSE)
#################################################################
##### 6. Create the matrix of response/covariates, gmm instruments
##### and normal instruments for the diff model
#################################################################
# create the matrix of gmm instruments for every individual
W1 <- lapply(W,
function(x){
u <- mapply(makegmm, x, gmm.lags, TL1, collapse, SIMPLIFY = FALSE)
u <- matrix(unlist(u), nrow = nrow(u[[1L]]))
u
}
)
# differentiate the matrix of response/covariates (and of normal
# instruments if any) and remove T1 - 1 time series (xd is already
# differenced)
yX1 <- lapply(yX,
function(x){
xd <- diff(x)
xd <- xd[- c(seq_len(TL1 - 1)), , drop = FALSE]
xd
}
)
if (normal.instruments){
Z1 <- lapply(Z,
function(x){
xd <- diff(x)
xd <- xd[- c(seq_len(TL1 - 1)), , drop = FALSE]
xd
}
)
}
#################################################################
##### 7. In case of system gmm, create the matrix of
##### response/covariates, gmm instruments and normal instruments
##### for the level model and merge with the diff model
#################################################################
if (transformation == "ld"){
W2 <- lapply(W,
function(x){
u <- mapply(makeW2, x, collapse, SIMPLIFY = FALSE)
# the matrix of instruments in difference has T - 2
# rows if one time series is lost (there are no gmm
# instruments for t = 2 but there is a moment
# condition with the intercept. In this case, a row
# of 0 should be added. Otherwise, the number of
# rows is just T - TL2
nrow.ud <- if(TL2 == 1L) { T - 2 } else { T - TL2 }
u <- matrix(unlist(u), nrow = nrow.ud)
if (TL2 == 1) u <- rbind(0, u)
u
}
)
# remove the relevant number of time series for data in level
yX2 <- lapply(yX,
function(x){
x <- x[- c(0:TL2), , drop = FALSE]
x
}
)
if (normal.instruments){
Z2 <- lapply(Z, function(x){x <- x[- c(0:TL2), , drop = FALSE]; x})
}
}
#################################################################
##### 8. Add time dummies if effect = "twoways"
#################################################################
if (effect == "twoways"){
namesV <- levels(index(data, which = "time"))
if (transformation == "d"){
V1 <- td.model.diff <- diff(diag(1, T - TL1 + 1))[, -1]
namesV <- namesV[- c(0:(TL1))]
}
else{
td <- cbind(1, rbind(0, diag(1, T - 1)))
# remove as many columns and rows as there are lost time series
# in level (the difference of position between rows and columns
# is due to the fact that the first column of td is the
# intercept and should be kept anyway
V2 <- td[- c(seq_len(TL2)), - c(2:(2 + TL2 - 1))]
V1 <- diff(V2)
namesV <- c("(Intercept)", namesV[- c(0:TL2 + 1)])
}
for (i in seq_len(N)){
yX1[[i]] <- cbind(yX1[[i]], V1)
if (transformation == "d"){
W1[[i]] <- cbind(W1[[i]], V1)
}
else{
W2[[i]] <- cbind(W2[[i]], V2)
yX2[[i]] <- cbind(yX2[[i]], V2)
}
}
}
# A QAD fix for the bug in mtest for ld model without time.dummies
if (effect == "individual" && transformation == "ld"){
namesV <- levels(index(data, which = "time"))
namesV <- c("(Intercept)", namesV[-c(0:TL2 + 1)])
}
#################################################################
##### 9. In case of unbalanced data, replace NA's by 0 and overwrite
##### rows for missing time series with 0
#################################################################
for (i in seq_len(N)){
narows <- apply(yX1[[i]], 1, function(z) anyNA(z))
yX1[[i]][narows, ] <- 0
W1[[i]][is.na(W1[[i]])] <- 0
W1[[i]][narows, ] <- 0
if (normal.instruments){
Z1[[i]][is.na(Z1[[i]])] <- 0
Z1[[i]][narows, ] <- 0
}
if (transformation == "ld"){
narows <- apply(yX2[[i]], 1, function(z) anyNA(z))
yX2[[i]][narows, ] <- 0
W2[[i]][is.na(W2[[i]])] <- 0
W2[[i]][narows, ] <- 0
if (normal.instruments){
Z2[[i]][is.na(Z2[[i]])] <- 0
Z2[[i]][narows, ] <- 0
}
}
}
#################################################################
##### 10. In case of sys gmm, bdiag or rbind the diff and level
##### matrices
#################################################################
if (transformation == "ld"){
for (i in seq_len(N)){
W1[[i]] <- bdiag(W1[[i]], W2[[i]])
yX1[[i]] <- rbind(yX1[[i]], yX2[[i]])
if (normal.instruments) Z1[[i]] <- bdiag(Z1[[i]], Z2[[i]])
}
}
if (normal.instruments){
for (i in seq_len(N)) W1[[i]] <- cbind(W1[[i]], Z1[[i]])
}
#################################################################
##### 11. Compute the estimator
#################################################################
W <- W1
yX <- yX1
# Compute the first step matrices
if (transformation == "d") A1 <- tcrossprod(diff(diag(1, T - TL1 + 1)))
if (transformation == "ld") A1 <- FSM(T - TL2, "full") # TODO: always uses "full" but man page tells otherwise
# compute the estimator
## WX <- mapply(function(x, y) crossprod(x, y), W, yX, SIMPLIFY = FALSE)
## WX <- Reduce("+", WX)
## zerolines <- which(apply(WX, 1, function(z) sum(abs(z))) == 0)
## for (i in seq_len(N)) W[[i]] <- W[[i]][, - zerolines]
WX <- mapply(function(x, y) crossprod(x, y), W, yX, SIMPLIFY = FALSE)
Wy <- lapply(WX, function(x) x[ , 1L])
WX <- lapply(WX, function(x) x[ , -1L, drop = FALSE])
A1 <- lapply(W, function(x) crossprod(t(crossprod(x, A1)), x))
A1 <- Reduce("+", A1)
minevA1 <- min(eigen(A1)$values)
eps <- 1E-9
A1 <- if(minevA1 < eps){
warning("the first-step matrix is singular, a general inverse is used")
ginv(A1)
} else solve(A1)
A1 <- A1 * length(W)
WX <- Reduce("+", WX)
Wy <- Reduce("+", Wy)
t.CP.WX.A1 <- t(crossprod(WX, A1))
B1 <- solve(crossprod(WX, t.CP.WX.A1))
Y1 <- crossprod(t.CP.WX.A1, Wy)
coefficients <- as.numeric(crossprod(B1, Y1))
if (effect == "twoways") names.coef <- c(names.coef, namesV)
names(coefficients) <- names.coef
residuals <- lapply(yX,
function(x)
as.vector(x[ , 1L] - crossprod(t(x[ , -1L, drop = FALSE]), coefficients)))
outresid <- lapply(residuals, function(x) outer(x, x))
A2 <- mapply(function(x, y) crossprod(t(crossprod(x, y)), x), W, outresid, SIMPLIFY = FALSE)
A2 <- Reduce("+", A2)
minevA2 <- min(eigen(A2)$values)
A2 <- if (minevA2 < eps) {
warning("the second-step matrix is singular, a general inverse is used")
ginv(A2)
} else solve(A2)
if (model == "twosteps") {
coef1s <- coefficients
t.CP.WX.A2 <- t(crossprod(WX, A2))
Y2 <- crossprod(t.CP.WX.A2, Wy)
B2 <- solve(crossprod(WX, t.CP.WX.A2))
coefficients <- as.numeric(crossprod(B2, Y2))
names(coefficients) <- names.coef
# calc. residuals with coefs from 2nd step
residuals <- lapply(yX,
function(x){
nz <- rownames(x)
z <- as.vector(x[ , 1L] - crossprod(t(x[ , -1L, drop = FALSE]), coefficients))
names(z) <- nz
z})
vcov <- B2
}
else vcov <- B1
rownames(vcov) <- colnames(vcov) <- names.coef
# TODO: yX does not contain the original data (but first-diff-ed data) -> fitted.values not what you would expect
fitted.values <- mapply(function(x, y) x[ , 1L] - y, yX, residuals)
# fitted.values <- data[ , 1L] - unlist(residuals) # in 'data' is original data, but obs lost due to diff-ing are not dropped -> format incompatible
if(model == "twosteps") coefficients <- list(coef1s, coefficients)
args <- list(model = model,
effect = effect,
transformation = transformation,
# collapse = collapse, # TODO: this would give a list of instruments, not the logical collapse as arg input
namest = namesV)
result <- list(coefficients = coefficients,
residuals = residuals, # is a list (but documentation said for a long time 'vector'), mtest() and sargan() expect a list
vcov = vcov,
fitted.values = fitted.values,
# df.residual = df.residual, # TODO: df.residual is not defined here, hence the function 'df.residual' is attached by this
model = yX,
W = W,
A1 = A1,
A2 = A2,
call = cl,
args = args)
result <- structure(result,
class = c("pgmm", "panelmodel"),
pdim = pdim)
result
}
dynterms <- function(x){
trms.lab <- attr(terms(x), "term.labels")
result <- getvar(trms.lab)
nv <- names(result)
dn <- names(table(nv))[table(nv) > 1]
un <- names(table(nv))[table(nv) == 1]
resu <- result[un]
for (i in dn){
v <- sort(unique(unlist(result[nv == i])))
names(v) <- NULL
resu[[i]] <- v
}
resu
}
getvar <- function(x){
x <- as.list(x)
result <- lapply(x, function(y){
deb <- as.numeric(gregexpr("lag\\(", y)[[1L]])
if (deb == -1){
lags <- 0
avar <- y
}
else{
# inspar <- substr(y, deb + 2, nchar(y) - 1)
inspar <- substr(y, deb + 4, nchar(y) - 1)
coma <- as.numeric(gregexpr(",", inspar)[[1L]][1L])
if (coma == -1){
endvar <- nchar(inspar)
lags <- 1
}
else{
endvar <- coma - 1
lags <- substr(inspar, coma + 1, nchar(inspar))
lags <- eval(parse(text = lags))
}
avar <- substr(inspar, 1, endvar)
}
list(avar, lags)
}
)
nres <- sapply(result, function(x) x[[1L]])
result <- lapply(result, function(x) x[[2L]])
names(result) <- nres
result
}
dynterms2formula <- function(x, response.name = NULL){
result <- character(0)
for (i in seq_along(x)){
theinst <- x[[i]]
# if the first element is zero, write the variable without lag and
# drop the 0 from the vector
if (theinst[1L] == 0){
at <- names(x)[i]
theinst <- theinst[-1L]
}
else{
at <- character(0)
}
# if there are still some lags, write them
if (length(theinst) > 0L){
if (length(theinst) > 1L){
at <- c(at, paste("lag(", names(x)[i], ",c(",
paste(theinst, collapse = ","), "))", sep =""))
}
else{
at <- c(at, paste("lag(", names(x)[i], ",", theinst, ")", sep =""))
}
}
result <- c(result, at)
}
if (is.null(response.name)) as.formula(paste("~", paste(result, collapse = "+")))
else as.formula(paste(response.name, "~", paste(result, collapse = "+")))
}
extract.data <- function(data, as.matrix = TRUE){
# the previous version is *very* slow because :
# 1. split works wrong on pdata.frame
# 2. model.matrix is lapplied !
form <- attr(data, "formula")
trms <- terms(form)
has.response <- attr(trms, 'response') == 1
has.intercept <- attr(trms, 'intercept') == 1
if (has.intercept == 1){
# Formula is unable to update formulas with no lhs
form <- Formula(update(formula(form), ~ . -1))
# form <- update(form, ~. -1)
}
index <- attr(data, "index")
X <- model.matrix(form, data)
if (has.response){
X <- cbind(data[[1L]], X)
colnames(X)[1L] <- deparse(trms[[2L]])
}
data <- split(as.data.frame(X), index[[1L]])
time <- split(index[[2L]], index[[1L]])
data <- mapply(
function(x, y){
rownames(x) <- y
if (as.matrix) x <- as.matrix(x)
x
}
, data, time, SIMPLIFY = FALSE)
data
}
G <- function(t){
G <- matrix(0, t, t)
for (i in seq_len(t-1)){
G[i, i] <- 2
G[i, i+1] <- -1
G[i+1, i] <- -1
}
G[t, t] <- 2
G
}
FD <- function(t){
FD <- Id(t)[-1L, ]
for (i in seq_len(t-1)){
FD[i, i] <- -1
}
FD
}
Id <- function(t){
diag(1, t)
}
FSM <- function(t, fsm){
switch(fsm,
"I" = Id(t),
"G" = G(t),
"GI" = bdiag(G(t-1), Id(t)),
"full" = rbind(cbind(G(t-1), FD(t)), cbind(t(FD(t)), Id(t)))
)
}
makegmm <- function(x, g, TL1, collapse = FALSE){
T <- length(x)
rg <- range(g)
z <- as.list((TL1 + 1):T)
x <- lapply(z, function(y) x[max(1, y - rg[2L]):(y - rg[1L])])
if (collapse) {
x <- lapply(x, rev)
m <- matrix(0, T - TL1, min(T - rg[1L], rg[2L]+1-rg[1L]))
for (y in seq_along(x)){ m[y, seq_along(x[[y]])] <- x[[y]]}
result <- m
}
else {
lx <- vapply(x, length, FUN.VALUE = 0.0)
n <- length(x)
lxc <- cumsum(lx)
before <- c(0, lxc[-n])
after <- lxc[n] - lx - before
result <- t(mapply(function(x, y, z)
c(rep(0, y), x, rep(0, z)),
x, before, after, SIMPLIFY = TRUE))
}
result
}
makeW2 <-function (x, collapse = FALSE){
if(collapse) { diff(x[-c(length(x))]) }
else { diag(diff(x[-c(length(x))])) }
}
#' @rdname pgmm
#' @export
coef.pgmm <- function(object,...){
model <- describe(object, "model")
if(model == "onestep") object$coefficients
else object$coefficients[[2L]]
}
#' @rdname pgmm
#' @export
summary.pgmm <- function(object, robust = TRUE, time.dummies = FALSE, ...) {
model <- describe(object, "model")
effect <- describe(object, "effect")
transformation <- describe(object, "transformation")
vv <- if(robust) vcovHC(object) else vcov(object)
K <- if(model == "onestep") length(object$coefficients)
else length(object$coefficients[[2L]])
object$sargan <- sargan(object, "twosteps")
object$m1 <- mtest(object, order = 1, vcov = vv)
# mtest with order = 2 is only feasible if more than 2 observations are present
if(NROW(object$model[[1]]) > 2) object$m2 <- mtest(object, order = 2, vcov = vv)
object$wald.coef <- pwaldtest(object, param = "coef", vcov = vv)
if(effect == "twoways") object$wald.td <- pwaldtest(object, param = "time", vcov = vv)
Kt <- length(object$args$namest)
rowsel <- if(!time.dummies && effect == "twoways") -c((K - Kt + 1):K)
else seq_len(K)
std.err <- sqrt(diag(vv))
b <- coef(object)
z <- b / std.err
p <- 2 * pnorm(abs(z), lower.tail = FALSE)
coefficients <- cbind(b, std.err, z, p)
colnames(coefficients) <- c("Estimate", "Std. Error", "z-value", "Pr(>|z|)")
object$coefficients <- coefficients[rowsel, , drop = FALSE]
class(object) <- "summary.pgmm"
object
}
#' Arellano--Bond Test of Serial Correlation
#'
#' Test of serial correlation for models estimated by GMM
#'
#' The Arellano--Bond test is a test of correlation based on the residuals of
#' the estimation. By default, the computation is done with the standard
#' covariance matrix of the coefficients. A robust estimator of this
#' covariance matrix can be supplied with the `vcov` argument.
#'
#' @param object an object of class `"pgmm"`,
#' @param order integer: the order of the serial correlation,
#' @param vcov a matrix of covariance for the coefficients or a function to
#' compute it,
#' @param \dots further arguments (currently unused).
#' @return An object of class `"htest"`.
#' @export
#' @author Yves Croissant
#' @seealso [pgmm()]
#' @references
#'
#' \insertCite{AREL:BOND:91}{plm}
#'
#' @keywords htest
#' @examples
#'
#' data("EmplUK", package = "plm")
#' ar <- pgmm(log(emp) ~ lag(log(emp), 1:2) + lag(log(wage), 0:1) +
#' lag(log(capital), 0:2) + lag(log(output), 0:2) | lag(log(emp), 2:99),
#' data = EmplUK, effect = "twoways", model = "twosteps")
#' mtest(ar, order = 1L)
#' mtest(ar, order = 2L, vcov = vcovHC)
#'
mtest <- function(object, ...) {
UseMethod("mtest")
}
#' @rdname mtest
#' @export
mtest.pgmm <- function(object, order = 1L, vcov = NULL, ...) {
if (!inherits(object, "pgmm")) stop("argument 'object' needs to be class 'pgmm'")
myvcov <- vcov
if (is.null(vcov)) vv <- vcov(object)
else if (is.function(vcov)) vv <- myvcov(object)
else vv <- myvcov
model <- describe(object, "model")
transformation <- describe(object, "transformation")
Kt <- length(object$args$namest)
if(order >= (obs <- NROW(object$model[[1]]))) {
error.msg <- paste0("argument 'order' (", order, ") specifies an order ",
"larger or equal than the number of available ",
"observations (", obs, ")")
stop(error.msg)
}
switch(transformation,
"d" = {
resid <- object$residuals
residl <- lapply(resid,
function(x)
c(rep(0, order), x[seq_len(length(x) - order)]))
},
"ld" = {
resid <- lapply(object$residuals,
function(x)
c(x[-c(Kt:(2 * Kt + 1))], rep(0, Kt)))
residl <- lapply(object$residuals,
function(x)
c(rep(0, order), x[seq_len(Kt - order - 1)], rep(0, Kt)))
})
X <- lapply(object$model, function(x) x[ , -1L, drop = FALSE])
W <- object$W
A <- if(model == "onestep") object$A1 else object$A2
EVE <- Reduce("+",
mapply(function(x, y) t(y) %*% x %*% t(x) %*% y, resid, residl, SIMPLIFY = FALSE))
EX <- Reduce("+", mapply(crossprod, residl, X, SIMPLIFY = FALSE))
XZ <- Reduce("+", mapply(crossprod, W, X, SIMPLIFY = FALSE))
ZVE <- Reduce("+",
mapply(function(x, y, z) t(x) %*% y %*% t(y) %*% z, W, resid, residl, SIMPLIFY = FALSE))
denom <- EVE - 2 * EX %*% vcov(object) %*% t(XZ) %*% A %*% ZVE + EX %*% vv %*% t(EX)
num <- Reduce("+", mapply(crossprod, resid, residl, SIMPLIFY = FALSE))
stat <- num / sqrt(denom)
names(stat) <- "normal"
if(!is.null(vcov)) vcov <- paste0(", vcov: ", deparse(substitute(vcov)))
method <- paste0("Arellano-Bond autocorrelation test of degree ", order, vcov)
pval <- 2 * pnorm(abs(stat), lower.tail = FALSE)
mtest <- list(statistic = stat,
p.value = pval,
alternative = "autocorrelation present",
method = method,
data.name = data.name(object))
class(mtest) <- "htest"
mtest
}
#' @rdname pgmm
#' @export
print.summary.pgmm <- function(x, digits = max(3, getOption("digits") - 2),
width = getOption("width"),
...) {
model <- describe(x, "model")
transformation <- describe(x, "transformation")
effect <- describe(x, "effect")
pdim <- attr(x, "pdim")
formula <- x$call$formula
model.text <- paste(effect.pgmm.list[effect], model.pgmm.list[model],
model.pgmm.transformation.list[transformation], sep = " ")
cat(paste(model.text, "\n"))
## TODO: add info about collapse argument in printed output
cat("\nCall:\n")
print(x$call)
cat("\n")
print(pdim)
ntot <- sum(unlist(x$residuals, use.names = FALSE) != 0)
ninst <- dim(x$W[[1L]])[2L]
cat("\nNumber of Observations Used:", ntot, sep = " ")
# cat("\nNumber of Instruments Used: ", ninst, "\n", sep ="") # TODO: more checks, then activate printing
cat("\nResiduals:\n")
print(summary(unlist(residuals(x), use.names = FALSE)))
cat("\nCoefficients:\n")
printCoefmat(x$coefficients, digits = digits)
cat("\nSargan test: ", names(x$sargan$statistic),
"(", x$sargan$parameter, ") = ", x$sargan$statistic,
" (p-value = ", format.pval(x$sargan$p.value,digits=digits), ")\n", sep = "")
cat("Autocorrelation test (1): ", names(x$m1$statistic),
" = ", x$m1$statistic,
" (p-value = ", format.pval(x$m1$p.value, digits = digits), ")\n", sep = "")
if(!is.null(x$m2)) {
# # mtest with order = 2 is only present in x if more than 2 observations were present
cat("Autocorrelation test (2): ", names(x$m2$statistic),
" = ", x$m2$statistic,
" (p-value = ", format.pval(x$m2$p.value,digits=digits), ")\n", sep = "")
}
cat("Wald test for coefficients: ", names(x$wald.coef$statistic),
"(",x$wald.coef$parameter,") = ", x$wald.coef$statistic,
" (p-value = ", format.pval(x$wald.coef$p.value, digits = digits), ")\n", sep = "")
if(effect == "twoways") {
cat("Wald test for time dummies: ", names(x$wald.td$statistic),
"(", x$wald.td$parameter, ") = ", x$wald.td$statistic,
" (p-value = ", format.pval(x$wald.td$p.value, digits = digits), ")\n", sep = "")
}
invisible(x)
}
#' Hansen--Sargan Test of Overidentifying Restrictions
#'
#' A test of overidentifying restrictions for models estimated by GMM.
#'
#' The Hansen--Sargan test ("J test") calculates the quadratic form of the moment
#' restrictions that is minimized while computing the GMM estimator. It follows
#' asymptotically a chi-square distribution with number of degrees of freedom
#' equal to the difference between the number of moment conditions and the
#' number of coefficients.
#'
#' @param object an object of class `"pgmm"`,
#' @param weights the weighting matrix to be used for the computation of the
#' test.
#' @return An object of class `"htest"`.
#' @export
#' @author Yves Croissant
#' @seealso [pgmm()]
#' @references
#'
#' \insertCite{HANS:82}{plm}
#'
#' \insertCite{SARG:58}{plm}
#'
#' @keywords htest
#' @examples
#'
#' data("EmplUK", package = "plm")
#' ar <- pgmm(log(emp) ~ lag(log(emp), 1:2) + lag(log(wage), 0:1) +
#' lag(log(capital), 0:2) + lag(log(output), 0:2) | lag(log(emp), 2:99),
#' data = EmplUK, effect = "twoways", model = "twosteps")
#' sargan(ar)
#'
sargan <- function(object, weights = c("twosteps", "onestep")) {
if (!inherits(object, "pgmm")) stop("argument 'object' needs to be class 'pgmm'")
weights <- match.arg(weights)
model <- describe(object, "model")
Ktot <- if(model == "onestep") length(object$coefficients)
else length(object$coefficients[[2L]])
z <- as.numeric(Reduce("+", mapply(crossprod, object$W, object$residuals, SIMPLIFY = FALSE)))
p <- ncol(object$W[[1L]])
A <- if(weights == "onestep") object$A1 else object$A2
stat <- as.numeric(tcrossprod(z, crossprod(z, A)))
parameter <- p - Ktot
names(parameter) <- "df"
names(stat) <- "chisq"
method <- "Sargan test"
pval <- pchisq(stat, df = parameter, lower.tail = FALSE)
sargan <- list(statistic = stat,
p.value = pval,
parameter = parameter,
method = method,
alternative = "overidentifying restrictions not valid",
data.name = data.name(object))
class(sargan) <- "htest"
sargan
}
|